Skip to main content
Log in

New Insights into the Biology and Pathobiology of Beta2-Glycoprotein I

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

β2-glycoprotein I (β2GPI) is the major autoantigen in the antiphospholipid syndrome. The central importance of understanding β2GPI physiology from the perspective of the rheumatologist is that it forms the foundation for understanding the pathophysiology underlying autoantibody generation, and the diverse mechanisms by which anti-β2GPI antibodies in complex with β2GPI may predispose an individual to the antiphospholipid syndrome clinical phenotype. This review examines some of the latest novel findings in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. McNeil, H.P., et al., Anti-phospholipid antibodies are directed against a complex antigen that includes a lipid-binding inhibitor of coagulation: beta 2-glycoprotein I (apolipoprotein H). Proc Natl Acad Sci U S A, 1990. 87: p. 4120–4.

    Article  CAS  PubMed  Google Scholar 

  2. Miyakis, S., et al., International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost, 2006. 4(2): p. 295–306.

    Article  CAS  PubMed  Google Scholar 

  3. Meroni, P.L., et al., Anti-beta 2 glycoprotein I antibodies and the risk of myocardial infarction in young premenopausal women. J Thromb Haemost, 2007. 5(12): p. 2421–8.

    Article  CAS  PubMed  Google Scholar 

  4. • Urbanus, R.T., et al., Antiphospholipid antibodies and risk of myocardial infarction and ischaemic stroke in young women in the RATIO study: a case-control study. Lancet Neurol, 2009. 8(11): p. 998–1005. This article emphasizes the fact that lupus anticoagulant is a significant risk factor for stroke in young women, especially in the context of other concurrent risk factors such as smoking.

  5. Jankowski, M., et al., Thrombogenicity of beta 2-glycoprotein I-dependent antiphospholipid antibodies in a photochemically induced thrombosis model in the hamster. Blood, 2003. 101: p. 157–62.

    Article  CAS  PubMed  Google Scholar 

  6. Giannakopoulos, B., et al., Current concepts on the pathogenesis of the antiphospholipid syndrome. Blood, 2007. 109(2): p. 422–30.

    Article  CAS  PubMed  Google Scholar 

  7. Miyakis, S., B. Giannakopoulos, and S.A. Krilis, Beta 2 glycoprotein I—function in health and disease. Thromb Res, 2004. 114(5–6): p. 335–46.

    Article  CAS  PubMed  Google Scholar 

  8. Lozier, J., N. Takahashi, and F.W. Putnam, Complete amino acid sequence of human plasma beta 2-glycoprotein I. Proc Natl Acad Sci U S A, 1984. 81(12): p. 3640–4.

    Article  CAS  PubMed  Google Scholar 

  9. Kamboh, M.I., R.E. Ferrell, and B. Sepehrnia, Genetic studies of human apolipoproteins. IV. Structural heterogeneity of apolipoprotein H (beta 2-glycoprotein I). Am J Hum Genet, 1988. 42(3): p. 452–7.

    CAS  PubMed  Google Scholar 

  10. Hunt, J.E., R.J. Simpson, and S.A. Krilis, Identification of a region of beta 2-glycoprotein I critical for lipid binding and anti-cardiolipin antibody cofactor activity. Proc Natl Acad Sci U S A, 1993. 90(6): p. 2141–5.

    Article  CAS  PubMed  Google Scholar 

  11. Bouma, B., et al., Adhesion mechanism of human beta(2)-glycoprotein I to phospholipids based on its crystal structure. EMBO J, 1999. 18(19): p. 5166–74.

    Article  CAS  PubMed  Google Scholar 

  12. Schwarzenbacher, R., et al., Crystal structure of human beta2-glycoprotein I: implications for phospholipid binding and the antiphospholipid syndrome. Embo J, 1999. 18(22): p. 6228–39.

    Article  CAS  PubMed  Google Scholar 

  13. • Agar, C., et al., Beta2-glycoprotein I can exist in 2 conformations: implications for our understanding of the antiphospholipid syndrome. Blood, 2010. 116(8): p. 1336–43. This article demonstrates that β2GPI can exist in two conformations in vivo: a circular form and an open form. The major APS epitope on DI is cryptic in the circular form.

  14. Reddel, S.W., et al., Epitope studies with anti-beta 2-glycoprotein I antibodies from autoantibody and immunized sources. J Autoimmun, 2000. 15: p. 91–6.

    Article  CAS  PubMed  Google Scholar 

  15. Oppermann, M., et al., The C-terminus of complement regulator Factor H mediates target recognition: evidence for a compact conformation of the native protein. Clin Exp Immunol, 2006. 144(2): p. 342–52.

    Article  CAS  PubMed  Google Scholar 

  16. Chen, V.M. and P.J. Hogg, Allosteric disulfide bonds in thrombosis and thrombolysis. J Thromb Haemost, 2006. 4(12): p. 2533–41.

    Article  CAS  PubMed  Google Scholar 

  17. • Passam, F.H., et al., Beta 2 glycoprotein I is a substrate of thiol oxidoreductases. Blood, 2010. 116(11): p. 1995–7. This article reveals for the first time that β2GPI is a substrate of thiol oxidoreductases.

  18. Haendeler, J., et al., Redox regulatory and anti-apoptotic functions of thioredoxin depend on S-nitrosylation at cysteine 69. Nature Cell Biology, 2002. 4(10): p. 743–749.

    Article  CAS  PubMed  Google Scholar 

  19. • Passam, F.H., et al., Redox control of beta2-glycoprotein I-von Willebrand factor interaction by thioredoxin-1. J Thromb Haemost, 2010. 8: p. 1754–1762. This article describes for the first time the importance of TRX-1 in regulating the β2GPI–vWF interaction and the implications of this for platelet adhesion to vWF. It also raises the issue that all functional studies of β2GPI need to be interpreted in the context of the redox status of β2GPI.

  20. Hulstein, J.J., et al., beta2-Glycoprotein I inhibits von Willebrand factor dependent platelet adhesion and aggregation. Blood, 2007. 110(5): p. 1483–91.

    Article  CAS  PubMed  Google Scholar 

  21. • Ioannou, Y., et al., Naturally occurring free thiols within {beta}2-glycoprotein I in vivo: nitrosylation, redox modification by endothelial cells, and regulation of oxidative stress-induced cell injury. Blood, 2010. 116(11): p. 1961–70. This article reveals that β2GPI can exist in a reduced form in vivo and that it serves an important biological function in this form, protecting endothelial cells against oxidative stress injury.

  22. Lin, K.Y., et al., beta(2)-glycoprotein I protects J774A.1 macrophages and human coronary artery smooth muscle cells against apoptosis. J Cell Biochem, 2005. 94(3): p. 485–96.

    Article  CAS  PubMed  Google Scholar 

  23. Lin, K.Y., et al., Evidence for inhibition of low density lipoprotein oxidation and cholesterol accumulation by apolipoprotein H (beta2-glycoprotein I). Life Sci, 2001. 69(6): p. 707–19.

    Article  CAS  PubMed  Google Scholar 

  24. Averna, M., et al., Beta-2-glycoprotein I is growth regulated and plays a role as survival factor for hepatocytes. Int J Biochem Cell Biol, 2004. 36(7): p. 1297–305.

    Article  CAS  PubMed  Google Scholar 

  25. Cai, G., T. Satoh, and H. Hoshi, Purification and characterization of an endothelial cell-viability maintaining factor from fetal bovine serum. Biochim Biophys Acta, 1995. 1269(1): p. 13–8.

    Article  PubMed  Google Scholar 

  26. Kutala, V.K., et al., Role of oxygen in postischemic myocardial injury. Antioxid Redox Signal, 2007. 9(8): p. 1193–206.

    Article  CAS  PubMed  Google Scholar 

  27. Ravichandran, K.S. and U. Lorenz, Engulfment of apoptotic cells: signals for a good meal. Nat Rev Immunol, 2007. 7(12): p. 964–74.

    Article  CAS  PubMed  Google Scholar 

  28. Casciola-Rosen, L.A., G. Anhalt, and A. Rosen, Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med, 1994. 179: p. 1317–30.

    Article  CAS  PubMed  Google Scholar 

  29. Balasubramanian, K., J. Chandra, and A.J. Schroit, Immune clearance of phosphatidylserine-expressing cells by phagocytes. The role of beta2-glycoprotein I in macrophage recognition. J Biol Chem, 1997. 272(49): p. 31113–7.

    Article  CAS  PubMed  Google Scholar 

  30. Manfredi, A.A., et al., Apoptotic cell clearance in systemic lupus erythematosus. II. Role of beta2-glycoprotein I. Arthritis Rheum, 1998. 41(2): p. 215–23.

    Article  CAS  PubMed  Google Scholar 

  31. Balasubramanian, K., S.N. Maiti, and A.J. Schroit, Recruitment of beta-2-glycoprotein 1 to cell surfaces in extrinsic and intrinsic apoptosis. Apoptosis, 2005. 10(2): p. 439–46.

    Article  CAS  PubMed  Google Scholar 

  32. Sheng, Y., et al., Impaired thrombin generation in beta 2-glycoprotein I null mice. J Biol Chem, 2001. 276(17): p. 13817–21.

    CAS  PubMed  Google Scholar 

  33. Maiti, S.N., et al., Beta-2-glycoprotein 1-dependent macrophage uptake of apoptotic cells: Binding to LRP receptor family members. J Biol Chem, 2007.

  34. Bevers, E.M., et al., Quantitative determination of the binding of beta2-glycoprotein I and prothrombin to phosphatidylserine-exposing blood platelets. Biochem J, 2005. 386(Pt 2): p. 271–9.

    CAS  PubMed  Google Scholar 

  35. • Reed, J.H., et al., Ro 60 functions as a receptor for beta(2)-glycoprotein I on apoptotic cells. Arthritis Rheum, 2009. 60(3): p. 860–9. This was the first study to reveal that Ro60 on apoptotic cells rather than phosphatidylserine functions as a key receptor for β2GPI.

  36. Clancy, R.M., When the Levee Doesn’t Break: A Novel Role of beta(2)-Glycoprotein I to Protect Against Congenital Heart Block. Arthritis and Rheumatism, 2009. 60(3): p. 636–638.

    Article  CAS  PubMed  Google Scholar 

  37. Levine, J.S., et al., Immunization with an apoptotic cell-binding protein recapitulates the nephritis and sequential autoantibody emergence of systemic lupus erythematosus. J Immunol, 2006. 177(9): p. 6504–16.

    CAS  PubMed  Google Scholar 

  38. Mevorach, D., et al., Systemic exposure to irradiated apoptotic cells induces autoantibody production. J Exp Med, 1998. 188(2): p. 387–92.

    Article  CAS  PubMed  Google Scholar 

  39. Georgiev, M., et al., Mature dendritic cells readily break tolerance in normal mice but do not lead to disease expression. Arthritis Rheum, 2005. 52(1): p. 225–38.

    Article  PubMed  Google Scholar 

  40. Arbuckle, M.R., et al., Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med, 2003. 349(16): p. 1526–33.

    Article  CAS  PubMed  Google Scholar 

  41. Buttari, B., et al., Oxidized beta2-glycoprotein I induces human dendritic cell maturation and promotes a T helper type I response. Blood, 2005. 106: p. 3880–7.

    Article  CAS  PubMed  Google Scholar 

  42. Morgan, P.E., A.D. Sturgess, and M.J. Davies, Increased levels of serum protein oxidation and correlation with disease activity in systemic lupus erythematosus. Arthritis Rheum, 2005. 52(7): p. 2069–79.

    Article  CAS  PubMed  Google Scholar 

  43. Pritzker, L.B., et al., Deimination of myelin basic protein. 2. Effect of methylation of MBP on its deimination by peptidylarginine deiminase. Biochemistry, 2000. 39(18): p. 5382–8.

    Article  CAS  PubMed  Google Scholar 

  44. Marshak-Rothstein, A. and I.R. Rifkin, Immunologically active autoantigens: the role of toll-like receptors in the development of chronic inflammatory disease. Annu Rev Immunol, 2007. 25: p. 419–41.

    Article  CAS  PubMed  Google Scholar 

  45. Vollmer, J., et al., Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8. J Exp Med, 2005. 202(11): p. 1575–85.

    Article  CAS  PubMed  Google Scholar 

  46. Hurst, J., et al., TLR7 and TLR8 ligands and antiphospholipid antibodies show synergistic effects on the induction of IL-1beta and caspase-1 in monocytes and dendritic cells. Immunobiology, 2009. 214(8): p. 683–91.

    Article  CAS  PubMed  Google Scholar 

  47. Demaria, O., et al., TLR8 deficiency leads to autoimmunity in mice. J Clin Invest, 2010. 120(10): p. 3651–62.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Peyman Mirarabshahi is supported by an Australian Postgraduate Scholarship Award. Work from the authors’ laboratory was funded by project grants from the National Health and Medical Research Council Australia.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. Krilis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giannakopoulos, B., Mirarabshahi, P. & Krilis, S.A. New Insights into the Biology and Pathobiology of Beta2-Glycoprotein I. Curr Rheumatol Rep 13, 90–95 (2011). https://doi.org/10.1007/s11926-010-0151-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-010-0151-9

Keywords

Navigation