Skip to main content

Advertisement

Log in

Evaluating Rare Variants in Complex Disorders Using Next-Generation Sequencing

  • Genetic Disorders (JF Cubells and EB Binder, Section Editors)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Determining the genetic architecture of liability for complex neuropsychiatric disorders like autism spectrum disorders and schizophrenia poses a tremendous challenge for contemporary biomedical research. Here we discuss how genetic studies first tested, and rejected, the hypothesis that common variants with large effects account for the prevalence of these disorders. We then explore how the discovery of structural variation has contributed to our understanding of the etiology of these disorders. The rise of fast and inexpensive oligonucleotide sequencing and methods of targeted enrichment and their influence on the search for rare genetic variation contributing to complex neuropsychiatric disorders is the next focus of our article. Finally, we consider the technical challenges and future prospects for the use of next-generation sequencing to reveal the complex genetic architecture of complex neuropsychiatric disorders in both research and the clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Eaton WW, Martins SS, Nestadt G, et al. The burden of mental disorders. Epidemiol Rev. 2008;30:1–14.

    Article  PubMed  Google Scholar 

  2. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.

    Article  PubMed  CAS  Google Scholar 

  3. Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science. 2001;291:1304–51.

    Article  PubMed  CAS  Google Scholar 

  4. Consortium IH. A haplotype map of the human genome. Nature. 2005;437:1299–320.

    Article  Google Scholar 

  5. Consortium IH. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449:851–61.

    Article  Google Scholar 

  6. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science. 1996;273:1516–7.

    Article  PubMed  CAS  Google Scholar 

  7. Zwick ME, Cutler DJ, Chakravarti A. Patterns of genetic variation in Mendelian and complex traits. Annu Rev Genomics Hum Genet. 2000;1:387–407.

    Article  PubMed  CAS  Google Scholar 

  8. Klein RJ, Zeiss C, Chew EY, et al. Complement factor H polymorphism in age-related macular degeneration. Science. 2005;308:385–9.

    Article  PubMed  CAS  Google Scholar 

  9. Consortium WTCC. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–78.

    Article  Google Scholar 

  10. Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery. Am J Hum Genet. 2012;90:7–24.

    Article  PubMed  CAS  Google Scholar 

  11. O’donovan MC, Craddock N, Norton N, et al. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet. 2008;40:1053–5.

    Article  PubMed  Google Scholar 

  12. Stefansson H, Ophoff RA, Steinberg S, et al. Common variants conferring risk of schizophrenia. Nature. 2009;460:744–7.

    PubMed  CAS  Google Scholar 

  13. Shi J, Levinson DF, Duan J, et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature. 2009;460:753–7.

    PubMed  CAS  Google Scholar 

  14. Consortium IS, Purcell SM, Wray NR, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009;460:748–52.

    Google Scholar 

  15. Need AC, Ge D, Weale ME, et al. A genome-wide investigation of SNPs and CNVs in schizophrenia. PLoS Genet. 2009;5:e1000373.

    Article  PubMed  Google Scholar 

  16. Benyamin B, McEvoy BP, Gordon S, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet. 2010;42:565–9.

    Article  PubMed  Google Scholar 

  17. Lee SH, Decandia TR, Ripke S, et al. Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs. Nat Genet. 2012;44:247–50.

    Article  PubMed  CAS  Google Scholar 

  18. McQuillan R, Eklund N, Pirastu N, et al. Evidence of inbreeding depression on human height. PLoS Genet. 2012;8:e1002655.

    Article  PubMed  CAS  Google Scholar 

  19. Wang K, Zhang H, Ma D, et al. Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature. 2009;459:528–33.

    Article  PubMed  CAS  Google Scholar 

  20. Weiss LA, Arking DE, Daly MJ, Chakravarti A. A genome-wide linkage and association scan reveals novel loci for autism. Nature. 2009;461:802–8.

    Article  PubMed  CAS  Google Scholar 

  21. Anney R, Klei L, Pinto D, et al. A genome-wide scan for common alleles affecting risk for autism. Hum Mol Genet. 2010;19:4072–82.

    Article  PubMed  CAS  Google Scholar 

  22. Devlin B, Melhem N, Roeder K. Do common variants play a role in risk for autism? Evidence and theoretical musings. Brain Res. 2011;1380:78–84.

    Article  PubMed  CAS  Google Scholar 

  23. Manolio TA, Brooks LD, Collins FS. A HapMap harvest of insights into the genetics of common disease. J Clin Invest. 2008;118:1590–605.

    Article  PubMed  CAS  Google Scholar 

  24. Manolio TA. Genomewide association studies and assessment of the risk of disease. N Engl J Med. 2010;363:166–76.

    Article  PubMed  CAS  Google Scholar 

  25. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461:747–53.

    Article  PubMed  CAS  Google Scholar 

  26. Maher B. Personal genomes: the case of the missing heritability. Nature. 2008;456:18–21.

    Article  PubMed  CAS  Google Scholar 

  27. Eichler EE, Flint J, Gibson G, et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet. 2010;11:446–50.

    Article  PubMed  CAS  Google Scholar 

  28. Falconer DS. The inheritance of liability to diseases with variable age of onset, with particular reference to diabetes mellitus. Ann Hum Genet. 1967;31:1–20.

    PubMed  CAS  Google Scholar 

  29. Lande R. The maintenance of genetic variability by mutation in a polygenic character with linked loci. Genet Res. 1975;26:221–35.

    Article  PubMed  CAS  Google Scholar 

  30. Turelli M. Heritable genetic variation via mutation-selection balance: Lerch’s zeta meets the abdominal bristle. Theor Popul Biol. 1984;25:138–93.

    Article  PubMed  CAS  Google Scholar 

  31. Barton NH, Turelli M. Evolutionary quantitative genetics: how little do we know? Annu Rev Genet. 1989;23:337–70.

    Article  PubMed  CAS  Google Scholar 

  32. Pritchard JK, Cox NJ. The allelic architecture of human disease genes: common disease-common variant.or not? Hum Mol Genet. 2002;11:2417–23.

    Article  PubMed  CAS  Google Scholar 

  33. Barton NH, Keightley PD. Understanding quantitative genetic variation. Nat Rev Genet. 2002;3:11–21.

    Article  PubMed  CAS  Google Scholar 

  34. Schork NJ, Murray SS, Frazer KA, Topol EJ. Common vs. rare allele hypotheses for complex diseases. Curr Opin Genet Dev. 2009;19:212–9.

    Article  PubMed  CAS  Google Scholar 

  35. Visscher PM, Goddard ME, Derks EM, Wray NR. Evidence-based psychiatric genetics, AKA the false dichotomy between common and rare variant hypotheses. Mol Psychiatry. 2011;17:474–85.

    Article  PubMed  Google Scholar 

  36. Iafrate AJ, Feuk L, Rivera MN, et al. Detection of large-scale variation in the human genome. Nat Genet. 2004;36:949–51.

    Article  PubMed  CAS  Google Scholar 

  37. Sebat J, Lakshmi B, Troge J, et al. Large-scale copy number polymorphism in the human genome. Science. 2004;305:525–8.

    Article  PubMed  CAS  Google Scholar 

  38. Sharp AJ, Locke DP, McGrath SD, et al. Segmental duplications and copy-number variation in the human genome. Am J Hum Genet. 2005;77:78–88.

    Article  PubMed  CAS  Google Scholar 

  39. Redon R, Ishikawa S, Fitch KR, et al. Global variation in copy number in the human genome. Nature. 2006;444:444–54.

    Article  PubMed  CAS  Google Scholar 

  40. Perry GH, Tchinda J, McGrath SD, et al. Hotspots for copy number variation in chimpanzees and humans. Proc Natl Acad Sci USA. 2006;103:8006–11.

    Article  PubMed  CAS  Google Scholar 

  41. Stankiewicz P, Lupski JR. Structural variation in the human genome and its role in disease. Annu Rev Med. 2010;61:437–55.

    Article  PubMed  CAS  Google Scholar 

  42. Girirajan S, Campbell CD, Eichler EE. Human copy number variation and complex genetic disease. Annu Rev Genet. 2011;45:203–26.

    Article  PubMed  CAS  Google Scholar 

  43. Walsh T, McClellan JM, Mccarthy SE, et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science. 2008;320:539–43.

    Article  PubMed  CAS  Google Scholar 

  44. Xu B, Roos JL, Levy S, et al. Strong association of de novo copy number mutations with sporadic schizophrenia. Nat Genet. 2008;40:880–5.

    Article  PubMed  CAS  Google Scholar 

  45. Stefansson H, Rujescu D, Cichon S, et al. Large recurrent microdeletions associated with schizophrenia. Nature. 2008;455:232–6.

    Article  PubMed  CAS  Google Scholar 

  46. Mccarthy SE, Makarov V, Kirov G, et al. Microduplications of 16p11.2 are associated with schizophrenia. Nat Genet. 2009;41:1223–7.

    Article  PubMed  CAS  Google Scholar 

  47. Mulle JG, Dodd AF, Mcgrath JA, et al. Microdeletions of 3q29 confer high risk for schizophrenia. Am J Hum Genet. 2010;87:229–36.

    Article  PubMed  CAS  Google Scholar 

  48. Magri C, Sacchetti E, Traversa M, et al. New copy number variations in schizophrenia. PLoS One. 2010;5:e13422.

    Article  PubMed  Google Scholar 

  49. Sebat J, Lakshmi B, Malhotra D, et al. Strong association of de novo copy number mutations with autism. Science. 2007;316:445–9.

    Article  PubMed  CAS  Google Scholar 

  50. Kumar RA, KaraMohamed S, Sudi J, et al. Recurrent 16p11.2 microdeletions in autism. Hum Mol Genet. 2008;17:628–38.

    Article  PubMed  CAS  Google Scholar 

  51. Weiss LA, Shen Y, Korn JM, et al. Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med. 2008;358:667–75.

    Article  PubMed  CAS  Google Scholar 

  52. Marshall CR, Noor A, Vincent JB, et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet. 2008;82:477–88.

    Article  PubMed  CAS  Google Scholar 

  53. Glessner JT, Wang K, Cai G, et al. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature. 2009;459:569–73.

    Article  PubMed  CAS  Google Scholar 

  54. Levy D, Ronemus M, Yamrom B, et al. Rare de novo and transmitted copy-number variation in autistic spectrum disorders. Neuron. 2011;70:886–97.

    Article  PubMed  CAS  Google Scholar 

  55. Moreno-De-Luca D, Mulle JG, Kaminsky EB, et al. Deletion 17q12 is a recurrent copy number variant that confers high risk of autism and schizophrenia. Am J Hum Genet. 2010;87:618–30.

    Article  PubMed  CAS  Google Scholar 

  56. Bentley DR, Balasubramanian S, Swerdlow HP, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456:53–9.

    Article  PubMed  CAS  Google Scholar 

  57. Wheeler DA, Srinivasan M, Egholm M, et al. The complete genome of an individual by massively parallel DNA sequencing. Nature. 2008;452:872–6.

    Article  PubMed  CAS  Google Scholar 

  58. Kidd JM, Cooper GM, Donahue WF, et al. Mapping and sequencing of structural variation from eight human genomes. Nature. 2008;453:56–64.

    Article  PubMed  CAS  Google Scholar 

  59. Lupski JR, Reid JG, Gonzaga-Jauregui C, et al. Whole-genome sequencing in a patient with Charcot-Marie-Tooth neuropathy. New Engl J Med. 2010;362:1181–91.

    Article  PubMed  CAS  Google Scholar 

  60. Fujimoto A, Nakagawa H, Hosono N, et al. Whole-genome sequencing and comprehensive variant analysis of a Japanese individual using massively parallel sequencing. Nat Genet. 2010;42:931–6.

    Article  PubMed  CAS  Google Scholar 

  61. Drmanac R, Sparks AB, Callow MJ, et al. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science. 2010;327:78–81.

    Article  PubMed  CAS  Google Scholar 

  62. Tong P, Prendergast JG, Lohan AJ, et al. Sequencing and analysis of an Irish human genome. Genome Biol. 2010;11:R91.

    Article  PubMed  Google Scholar 

  63. Consortium GP. A map of human genome variation from population-scale sequencing. Nature. 2010;467:1061–73.

    Article  Google Scholar 

  64. Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet. 2010;11:31–46.

    Article  PubMed  CAS  Google Scholar 

  65. Ng SB, Turner EH, Robertson PD, et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009;461:272–6.

    Article  PubMed  CAS  Google Scholar 

  66. Choi M, Scholl UI, Ji W, et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci USA. 2009;106:19096–101.

    Article  PubMed  CAS  Google Scholar 

  67. Ng SB, Buckingham KJ, Lee C, et al. Exome sequencing identifies the cause of a mendelian disorder. Nat Genet. 2010;42:30–5.

    Article  PubMed  CAS  Google Scholar 

  68. Xu B, Roos JL, Dexheimer P, et al. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat Genet. 2011;43:864–8.

    Article  PubMed  CAS  Google Scholar 

  69. Girard SL, Gauthier J, Noreau A, et al. Increased exonic de novo mutation rate in individuals with schizophrenia. Nat Genet. 2011;43:860–3.

    Article  PubMed  CAS  Google Scholar 

  70. Need AC, McEvoy JP, Gennarelli M, et al. Exome sequencing followed by large-scale genotyping suggests a limited role for moderately rare risk factors of strong effect in schizophrenia. Am J Hum Genet. 2012;91:303–12.

    Article  PubMed  CAS  Google Scholar 

  71. O’Roak BJ, Deriziotis P, Lee C, et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet. 2011;43:585–9.

    Article  PubMed  Google Scholar 

  72. Sanders SJ, Murtha MT, Gupta AR, et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature. 2012;485:237–41.

    Article  PubMed  CAS  Google Scholar 

  73. O’Roak BJ, Vives L, Girirajan S, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012;485:246–50.

    Article  PubMed  Google Scholar 

  74. Neale BM, Kou Y, Liu L, et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature. 2012;485:242–5.

    Article  PubMed  CAS  Google Scholar 

  75. Iossifov I, Ronemus M, Levy D, et al. De novo gene disruptions in children on the autistic spectrum. Neuron. 2012;74:285–99.

    Article  PubMed  CAS  Google Scholar 

  76. Noor A, Whibley A, Marshall CR, et al. Disruption at the PTCHD1 Locus on Xp22.11 in Autism spectrum disorder and intellectual disability. Sci Transl Med. 2010;2:49ra68.

    Article  PubMed  Google Scholar 

  77. Filges I, Röthlisberger B, Blattner A, et al. Deletion in Xp22.11: PTCHD1 is a candidate gene for X-linked intellectual disability with or without autism. Clin Genet. 2011;79:79–85.

    Article  PubMed  CAS  Google Scholar 

  78. Chung R-H, Ma D, Wang K, et al. An X chromosome-wide association study in autism families identifies TBL1X as a novel autism spectrum disorder candidate gene in males. Mol Autism. 2011;2:18.

    Article  PubMed  CAS  Google Scholar 

  79. Piton A, Gauthier J, Hamdan FF, et al. Systematic resequencing of X-chromosome synaptic genes in autism spectrum disorder and schizophrenia. Mol Psychiatry. 2011;16:867–80.

    Article  PubMed  CAS  Google Scholar 

  80. Mondal K, Ramachandran D, Patel VC, et al. Excess variants in AFF2 detected by massively parallel sequencing of males with autism spectrum disorder. Hum Mol Genet. 2012. doi:10.1093/hmg/dds267.

  81. Kiezun A, Garimella K, Do R, et al. Exome sequencing and the genetic basis of complex traits. Nat Genet. 2012;44:623–30.

    Article  PubMed  CAS  Google Scholar 

  82. Lyon GJ, Wang K. Identifying disease mutations in genomic medicine settings: current challenges and how to accelerate progress. Genome Med. 2012;4:58.

    Article  PubMed  Google Scholar 

  83. Rosenfeld JA, Mason CE, Smith TM. Limitations of the human reference genome for personalized genomics. PLoS One. 2012;7:e40294.

    Article  PubMed  CAS  Google Scholar 

  84. Glenn TC. Field guide to next-generation DNA sequencers. Mol Ecol Resour. 2011;11:759–69.

    Article  PubMed  CAS  Google Scholar 

  85. Shetty AC, Athri P, Mondal K, et al. SeqAnt: a web service to rapidly identify and annotate DNA sequence variations. BMC Bioinforma. 2010;11:471.

    Article  Google Scholar 

  86. Ward LD, Kellis M. Interpreting noncoding genetic variation in complex traits and human disease. Nat Biotechnol. 2012;30:1095–106.

    Article  PubMed  CAS  Google Scholar 

  87. Aickin M, Gensler H. Adjusting for multiple testing when reporting research results: the Bonferroni vs Holm methods. Am J Public Health. 1996;86:726–8.

    Article  PubMed  CAS  Google Scholar 

  88. •• Keinan A, Clark AG. Recent explosive human population growth has resulted in an excess of rare genetic variants. Science. 2012;336:740–3. This article characterizes how the explosive growth of human populations has impacted the patterns of human genetic variation, which need to be considered in studying the genetics of complex diseases and traits.

    Article  PubMed  CAS  Google Scholar 

  89. • Tennessen JA, Bigham AW, O’Connor TD, et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science. 2012;337:64–9. This study shows an excess of rare functional variants in human populations and suggests that large sample sized will be required to associate rare variants with complex traits.

    Article  PubMed  CAS  Google Scholar 

  90. Sun YV. Integration of biological networks and pathways with genetic association studies. Hum Genet. 2012;131(10):1677–86.

    Article  PubMed  Google Scholar 

  91. • Olson MV. Human genetic individuality. Ann Rev Genomics Hum Genet. 2012. doi:10.1146/annurev-genom-090711-163825. A review that argues that rare genetic variation, whose dynamics are governed by mutation-selection balance, account for the majority of human genetic individuality.

Download references

Conflict of Interest

M. Ezewudo: none; M.E. Zwick: grant from National Institutes of Health/National Heart, Lung, and Blood Institute, and consultant to Henry M. Jackson Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Zwick.

Additional information

This article is part of the Topical Collection on Genetic Disorders

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ezewudo, M., Zwick, M.E. Evaluating Rare Variants in Complex Disorders Using Next-Generation Sequencing. Curr Psychiatry Rep 15, 349 (2013). https://doi.org/10.1007/s11920-013-0349-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-013-0349-4

Keywords

Navigation