Skip to main content

Advertisement

Log in

Cognitive effects of cytotoxic cancer chemotherapy: Predisposing risk factors and potential treatments

  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Increasing evidence suggests that systemic cancer chemotherapy can have significant long-term effects on cognition, particularly on verbal learning, memory, attention, and speed of information processing. These deficits can be a source of significant distress to survivors. There is much less known about the mechanisms, predisposing vulnerabilities, and treatment of these deficits. We will summarize current knowledge of chemotherapy-associated cognitive deficits. Emerging theories about the role of selected genetic polymorphisms in heightening the vulnerability to chemotherapy-induced cognitive decline will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Ahles TA, Saykin A: Cognitive effects of standard-dose chemotherapy in patients with cancer. Cancer Invest 2001, 9:812–820. This study is a good example of the profile of cognitive deficits associated with chemotherapy.

    Article  Google Scholar 

  2. Ahles T: Neuropsychological impact of systemic chemotherapy. Paper presented to the National Cancer Advisory Board. National Cancer Institute, 2002.

  3. Ferguson RJ, Ahles TA: Low neuropsychologic performance among adult cancer survivors treated with chemotherapy. Curr Neurol Neurosci Rep 2003, 3:215–222.

    Article  PubMed  Google Scholar 

  4. Meyers CA, Geara F, Wong PF, et al.: Neurocognitive effects of therapeutic irradiation for base of skull tumors. Int J Radiat Oncol Biol Phys 2000, 46:51–55.

    Article  PubMed  CAS  Google Scholar 

  5. Olin JJ: Cognitive function after systemic therapy for breast cancer. Oncology 2001, 15:613–618.

    PubMed  CAS  Google Scholar 

  6. Rugo H, Ahles TA: The impact of adjuvant therapy for breast cancer on cognitive function: current evidence and directions for research. Semin Oncol 2003, 30:749–762.

    Article  PubMed  CAS  Google Scholar 

  7. Wefel JS, Lenzi R, Theriault RL, et al.: The cognitive sequelae of standard-dose adjuvant chemotherapy in women with breast carcinoma: Results of a prospective, randomized, longitudinal trial. Cancer 2004, 100:2292–2299.

    Article  PubMed  CAS  Google Scholar 

  8. Saykin AJ, Ahles TA, Schoenfeld JD, et al.: Gray matter reduction on voxel-based morphometry in chemotherapy-treated cancer survivors. J Int Neuropsychol Soc 2003, 9:246.

    Google Scholar 

  9. President’s Cancer Panel: Cancer Care Issues in the United States: Quality of Care, Quality of Life. Washington, D.C., National Cancer Program, National Cancer Institute, 1999.

    Google Scholar 

  10. Ferrell BR, Dow K, Grant M: Measurement of the quality of life in cancer survivors. Qual Life Res 1995, 4:523–531.

    Article  PubMed  CAS  Google Scholar 

  11. Barton D, Loprinzi C: Novel approaches to preventing chemotherapy-induced cognitive dysfunction in breast cancer: the art of the possible. Clin Breast Cancer 2002, 3:S121–127.

    PubMed  Google Scholar 

  12. Silberfarb PM: Chemotherapy and cognitive defects in cancer patients. Annu Rev Med 1983, 34:35–46.

    Article  PubMed  CAS  Google Scholar 

  13. Ahles TA, Saykin AJ, Furstenberg CT, et al.: Neuropsychologic impact of standard-dose systemic chemotherapy in long-term survivors of breast cancer and lymphoma. J Clin Oncol 2002, 20:485–493.

    Article  PubMed  CAS  Google Scholar 

  14. Walch SE, Ahles TA, Saykin AJ: Neuropsychological impact of cancer and cancer treatments. In Psycho-Oncology. Edited by Holland JC, Breitbart W, Jacobson PB, et al. New York: Oxford University Press; 1998:500–505.

    Google Scholar 

  15. Anderson-Hanley C, Sherman ML, Riggs R, et al.: Possible cognitive effects of systemic treatment for cancer: A meta-analysis. J Int Neuropsychol Soc 2002, 8:254. This is a helpful summary of available studies on cognitive effects of chemotherapy and associated methodological issues.

    Article  Google Scholar 

  16. Keime-Guibert F, Napolitano M, Delattre JY: Neurological complications of radiotherapy and chemotherapy. J Neurol 1998, 245:695–708.

    Article  PubMed  CAS  Google Scholar 

  17. Tuxen MK, Hansen SW: Neurotoxicity secondary to antineoplastic drugs. Cancer Treat Rev 1994, 20:191–214.

    Article  PubMed  CAS  Google Scholar 

  18. Troy L, McFarland K, Littman-Power S, et al.: Cisplatin-based therapy: a neurological and neuropsychological review. Psychooncology 2000, 9:29–39.

    Article  PubMed  CAS  Google Scholar 

  19. Saykin AJ, Ahles TA, McDonald BC: Mechanisms of chemotherapy-induced cognitive disorders: Neuropsychological, pathophysiological and neuroimaging perspectives. Semin Clin Neuropsychiatry 2003, 8:201–216.

    Article  PubMed  Google Scholar 

  20. Quinn CT, Kamen BA: A biochemical perspective of methotrexate neurotoxicity with insight on nonfolate rescue modalities. J Invest Med 1996, 44:522–530.

    CAS  Google Scholar 

  21. Madhyastha S, Somayaji SN, Rao MS, et al.: Hippocampal brain amines in methotrexate-induced learning and memory deficit. Can J Physiol Pharmacol 2002, 80:1076–1084.

    Article  PubMed  CAS  Google Scholar 

  22. van der Kooy D, Zito KA, Roberts DC: Evidence on the retrograde neurotoxicity of doxorubicin. Neurosci Lett 1985, 53:215–219.

    Article  PubMed  Google Scholar 

  23. Arnsten AFT: Catecholamine modulation of prefrontal cortical cognitive function. Trends Cognitive Sci 1998, 2:436–447.

    Article  Google Scholar 

  24. Sarter M, Givens B, Bruno JP: The cognitive neuroscience of sustained attention: where top-down meets bottom-up. Brain Res Brain Res Rev 2001, 35:146–160.

    Article  PubMed  CAS  Google Scholar 

  25. Sarter M, Bruno JP: Cortical cholinergic inputs mediating arousal, attentional processing and dreaming: differential afferent regulation of the basal forebrain by telencephalic and brainstem afferents. Neuroscience 2000, 95:933–952.

    Article  PubMed  CAS  Google Scholar 

  26. Sarter M, Bruno JP, Turchi J: Basal forebrain afferent projections modulating cortical acetylcholine, attention, and implications for neuropsychiatric disorders. Ann N Y Acad Sci 1999, 877:368–382.

    Article  PubMed  CAS  Google Scholar 

  27. Thiebaut F, Tsuruo T, Hamada H, et al.: Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci U S A 1987, 84:7735–7738.

    Article  PubMed  CAS  Google Scholar 

  28. Cordon-Cardo C, O’Brien JP, Casals D, et al.: Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci U S A 1989, 86:695–698.

    Article  PubMed  CAS  Google Scholar 

  29. Gao B, Hagenbuch B, Kullak-Ublick GA, et al.: Organic aniontransporting polypeptides mediate transport of opioid peptides across blood-brain barrier. J Pharmacol Exp Ther 2000, 294:73–79.

    PubMed  CAS  Google Scholar 

  30. Chang G: Multidrug resistance ABC transporters. FEBS Letters 2003, 555:102–105.

    Article  PubMed  CAS  Google Scholar 

  31. Kim RB: Drugs as P-glycoprotein substrates, inhibitors, and inducers. Drug Metab Rev 2002, 34:47–54.

    Article  PubMed  CAS  Google Scholar 

  32. Marzolini C, Paus E, Buclin T, Kim RB: Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clin Pharmacol Ther 2004, 75:13–33.

    Article  PubMed  CAS  Google Scholar 

  33. Hoffmeyer S, Burk O, von Richter O, et al.: Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with Pglycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A 2000, 97:3473–3478.

    Article  PubMed  CAS  Google Scholar 

  34. Kim RB, Leake BF, Choo EF, et al.: Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther 2001, 70:189–199.

    Article  PubMed  CAS  Google Scholar 

  35. Siddiqui A, Kerb R, Weale ME, et al.: Association of multidrug resistance in epilepsy with a polymorphism in the drugtransporter gene ABCB1. N Engl J Med 2003, 348:1442–1448.

    Article  PubMed  CAS  Google Scholar 

  36. Hagenbuch B, Gao B, Meier PJ: Transport of xenobiotics across the blood-brain barrier. News Physiol Sci 2002, 17:231–234.

    PubMed  CAS  Google Scholar 

  37. Kim RB: Organic anion-transporting polypeptide (OATP) transporter family and drug disposition. Eur J Clin Invest 2003, 33(Suppl2):1–5.

    Article  PubMed  Google Scholar 

  38. Meier PJ, Eckhardt U, Schroeder A, et al.: Substrate specificity of sinusoidal bile acid and organic anion uptake systems in rat and human liver. Hepatology 1997, 26:1667–1677.

    Article  PubMed  CAS  Google Scholar 

  39. Marzolini C, Tirona R, Kim R: Pharmacogenomics of the OATP and OAT families. Pharmacogenomics 2004, 205:273–282.

    Article  Google Scholar 

  40. Hicks RR, Numan S, Dhillon HS, et al.: Alterations in BDNF and NT-3 mRNAs in rat hippocampus after experimental brain trauma. Brain Res Mol Brain Res 1997, 48:401–406.

    Article  PubMed  CAS  Google Scholar 

  41. Hicks RR, Zhang L, Dhillon HS, et al.: Expression of trkB mRNA is altered in rat hippocampus after experimental brain trauma. Brain Res Mol Brain Res 1998, 59:264–268.

    Article  PubMed  CAS  Google Scholar 

  42. Egan MF, Kojirna M, Callicott JH, et al.: The BDNF val66met Polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 2003, 112:257–269. This paper shows the role of selected polymorphisms in cognitive function and several methods important in drawing the connection between single nucleotide polymorphisms and real life functional effects.

    Article  PubMed  CAS  Google Scholar 

  43. Lu B, Gottschalk W: Modulation of hippocampal synaptic transmission and plasticity by neurotrophins. Prog Brain Res 2000, 126:231–241.

    Article  Google Scholar 

  44. Poo MM: Neurotrophins as synaptic modulators. Nature Reviews Neuroscience 2001, 2:24–32.

    Article  PubMed  CAS  Google Scholar 

  45. Aoyama M, Asai K, Shishikura T, et al.: Human neuroblastomas with unfavorable biologies express high levels of brainderived neurotrophic factor mRNA and a variety of its variants. Cancer Lett 2001, 164:51–60.

    Article  PubMed  CAS  Google Scholar 

  46. Nakayama M, Gahara Y, Kitamura T, et al.: Distinctive four promoters collectively direct expression of brain-derived neurotrophic factor gene. Brain Res Mol Brain Res 1994, 21:206–218.

    Article  PubMed  CAS  Google Scholar 

  47. Dias BG, Banerjee SB, Duman RS, et al.: Differential regulation of brain derived neurotrophic factor transcripts by antidepressant treatments in the adult rat brain. Neuropharmacology 2003, 45:553–563.

    Article  PubMed  CAS  Google Scholar 

  48. Timmusk T, Lendahl U, Funakoshi H, et al.: Identification of brain-derived neurotrophic factor promoter regions mediating tissue-specific, axotomy-, and neuronal activity-induced expression in transgenic mice. J Cell Biol 1995, 128:185–199.

    Article  PubMed  CAS  Google Scholar 

  49. Kunugi H, Ueki A, Otsuka M, et al.: A novel polymorphism of the brain-derived neurotrophic factor (BDNF) gene associated with late-onset Alzheimer’s disease. Mol Psychiatry 2001, 6:83–86.

    Article  PubMed  CAS  Google Scholar 

  50. Riemenschneider M, Schwarz S, Wagenpfeil S, et al.: A Polymorphism of the Brain-Derived Neurotrophic Factor (BDNF) is Associated with Alzheimer’s Disease in Patients Lacking the Apolipoprotein E E4 Allele. Mol Psychiatry 2002, 7:782–785.

    Article  PubMed  CAS  Google Scholar 

  51. Szekeres G, Juhasz A, Rimanoczy A, et al.: The C270T polymorphism of the brain-derived neurotrophic factor gene is associated with schizophrenia. Schizophr Res 2003, 65:15–18.

    Article  PubMed  Google Scholar 

  52. Chen Y, Lomnitski L, Michaelson DM, et al.: Motor and cognitive deficits in apolipoprotein E-deficient mice after closed head injury. Neuroscience 1997, 80:1255–1262.

    Article  PubMed  CAS  Google Scholar 

  53. Hartman RE, Laurer H, Longhi L, et al.: Apolipoprotein E4 influences amyloid deposition but not cell loss after traumatic brain injury in a mouse model of Alzheimer’s disease. J Neurosci 2002, 22:10083–10087.

    PubMed  CAS  Google Scholar 

  54. Sabo T, Lomnitski L, Nyska A, et al.: Susceptibility of transgenic mice expressing human apolipoprotein E to closed head injury: the allele E3 is neuroprotective whereas E4 increases fatalities. Neuroscience 2000, 101:879–884.

    Article  PubMed  CAS  Google Scholar 

  55. Laws SM, Clarnette RM, Taddei K, et al.: APOE-epsilon4 and APOE -491A polymorphisms in individuals with subjective memory loss. Mol Psychiatry 2002, 7:768–775.

    Article  PubMed  CAS  Google Scholar 

  56. Nathoo N, Chetry R, van Dellen JR, et al.: Apolipoprotein E polymorphism and outcome after closed traumatic brain injury: influence of ethnic and regional differences. J Neurosurg 2003, 98:302–306.

    PubMed  CAS  Google Scholar 

  57. Nathoo N, Chetty R, van Dellen JR, et al.: Genetic vulnerability following traumatic brain injury: the role of apolipoprotein E. Mol Pathology 2003, 56:132–136.

    Article  CAS  Google Scholar 

  58. Friedman G, Froom P, Sazbon L, et al.: Apolipoprotein Eepsilon4 genotype predicts a poor outcome in survivors of traumatic brain injury. Neurology 1999, 52:244–248.

    PubMed  CAS  Google Scholar 

  59. Parasuraman R, Greenwood PM, Sunderland T: The apolipoprotein E gene, attention, and brain function. Neuropsychology 2002, 16:254–274.

    Article  PubMed  Google Scholar 

  60. Ahles TA, Saykin AJ, Noll WW, et al.: The relationship of APOE genotype to neuropsychological performance in long-term cancer survivors treated with standard dose chemotherapy. Psychooncology 2003, 12:612–619.

    Article  PubMed  Google Scholar 

  61. McAllister TW, Summerall L: Genetic polymorphisms in the expression and treatment of neuropsychiatric disorders. Curr Psychiatry Rep 2003, 5:400–409.

    PubMed  Google Scholar 

  62. Weinberger DR, Egan MF, Bertolino A, et al.: Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry 2001, 50:825–844.

    Article  PubMed  CAS  Google Scholar 

  63. Gainetdinov RR, Jones SR, Fumagalli F, et al.: Re-evaluation of the role of the dopamine transporter in dopamine system homeostasis. Brain Res Brain Res Rev 1998, 26:148–153.

    Article  PubMed  CAS  Google Scholar 

  64. Malhotra AK, Kestler LJ, Mazzanti C, et al.: A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. Am J Psychiatry 2002, 159:652–654.

    Article  PubMed  Google Scholar 

  65. Gogos JA, Morgan M, Luine V, et al.: Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci U S A 1998, 95:9991–9996.

    Article  PubMed  CAS  Google Scholar 

  66. Liljequist R, Haapalinna A, Ahlander M, et al.: Catechol Omethyltransferase inhibitor tolcapone has minor influence on performance in experimental memory models in rats. Behav Brain Res 1997, 82:195–202.

    Article  PubMed  CAS  Google Scholar 

  67. Gasparini M, Fabrizio E, Bonifati V, et al.: Cognitive improvement during Tolcapone treatment in Parkinson’s disease. J Neural Transm 1997, 104:887–894.

    Article  PubMed  CAS  Google Scholar 

  68. Egan MF, Goldberg TE, Kolachana BS, et al.: Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci U S A 2001, 98:6917–6922.

    Article  PubMed  CAS  Google Scholar 

  69. Goldberg TE, Egan MF, Gscheidle T, et al.: Executive subprocesses in working memory: relationship to catechol-O-methyltransferase Val158Met genotype and schizophrenia. Arch Gen Psychiatry 2003, 60:889–896.

    Article  PubMed  CAS  Google Scholar 

  70. Bilder RM, Volavka J, Czobor P, et al.: Neurocognitive correlates of the COMT Val(158)Met polymorphism in chronic schizophrenia. Biol Psychiatry 2002, 52:701–707.

    Article  PubMed  CAS  Google Scholar 

  71. Lipsky RH, Sparling MB, Ryan LM, et al.: Role of COMT Val158Met genotype in executive functioning following traumatic brain injury. J Neuropsychiatry Clin Neurosci 2002, 14:116.

    Google Scholar 

  72. Flashman LA, Saykin AJ, Rhodes CH, et al.: Effect of COMT Val/ Met genotype on frontal lobe functioning in traumatic brain injury. J Neuropsychiatry Clin Neurosci 2004, 16:238–239.

    Google Scholar 

  73. McAllister TW, McDonald B, Flashman L, et al.: Differential effect of COMT allele status on frontal activation associated with a dopaminergic agonist. J Neuropsychiatry Clin Neurosci 2004, 16:240.

    Google Scholar 

  74. Ferguson RJ, Ahles TA: Brief cognitive-behavioral treatment of chemotherapy-associated attention and memory complaints among breast cancer survivors: Pilot data. In Final Program & Rapid Communication Poster Abstracts of the 23rd Annual Scientific Sessions of the Society of Behavioral Medicine. Washington, DC: 2002:74.

  75. Cimprich B: Development of an intervention to restore attention in cancer patients. Cancer Nurs 1993, 16:83–92.

    Article  PubMed  CAS  Google Scholar 

  76. Butler R, Copeland D: Additional processes and their remediation in children treated for cancer: A literature review and the development of a therapeutic approach. J Int Neuropsychol Soc 2002, 8:115–124.

    Article  PubMed  Google Scholar 

  77. Ferguson RJ, Mittenberg W: Cognitive behavioral treatment of postconcussion syndrome: a therapist’s manual. In Sourcebook of Psychological Treatment Manuals for Adult Disorders. Edited by Van Hasselt VB, Hersen M. New York: Plenum Press; 1996:615–656.

    Google Scholar 

  78. Ferguson RJ, Mittenberg W: Cognitive-behavioral treatment of postconcussion syndrome: Multiple case data. Presented at the 30th Annual Convention of the Association for the Advancement of Behavior Therapy, New York, NY. 1996.

    Google Scholar 

  79. Prigatano GP: Principles of Neuropsychological Rehabilitation. New York, Oxford University Press, 1999.

    Google Scholar 

  80. Sohlberg MM, Mateer CA: Cognitive Rehabilitation: An Integrative Neuropsychological Approach. New York, Guilford Press, 2001.

    Google Scholar 

  81. Cicerone K, Dahlberg C, Kalmar K, et al.: Evidence-based cognitive rehabilitation recommendations for clinical practice. Arch Phys Med Rehabil 2000, 8:1596–1615. This paper is an excellent summary of the available literature on the efficacy of cognitive remediation interventions.

    Article  Google Scholar 

  82. Gray JM, Robertson I, Pentland B, et al.: Microcomputer-based attentional retraining after brain damage: a randomized group controlled trial. Neuropsychol Rehabil 1992, 2:97–115.

    Google Scholar 

  83. Novack TA, Caldwell SG, Duke LW, et al.: Focused versus unstructured intervention for attention deficits after traumatic brain injury. J Head Traum Rehabil 1996, 11:52–60.

    Google Scholar 

  84. Niemann H, Ruff RM, Baser CA: Computer assisted attention retraining in head injured individuals: a controlled efficacy study of an out-patient program. J Consult Clin Psychol 1990, 58:811–817.

    Article  PubMed  CAS  Google Scholar 

  85. Sturm W, Wilmes K, Orgass B: Do specific attention deficits need specific training? Neuropsychol Rehabil 1997, 7:81–103.

    Google Scholar 

  86. Ethier M, Braun C, Baribeau JMC: Computer-dispensed cognitive-perceptual training of closed head injury patients after spontaneous recovery. Study 1: speeded tasks. Can J Rehabil 1989, 2:223–233.

    Google Scholar 

  87. Wilson B, Robertson IH: A home based intervention for attentional slips during reading following head injury: a single case study. Neuropsychol Rehabil 1992, 2:193–205.

    Google Scholar 

  88. Gansler DA, McCaffrey RJ: Remediation of chronic attention deficits in traumatic brain-injured patients. Arch Clin Neuropsychol 1991, 6:335–353.

    Article  PubMed  CAS  Google Scholar 

  89. Gray JM, Roberston I: Remediation of attentional difficulties following brain injury: 3 experimental single case studies. Brain Injury 1989, 3:163–170.

    PubMed  CAS  Google Scholar 

  90. Wood RL: Rehabilitation of patients with disorders of attention. J Head Traum Rehabil 1986, 1:43–53.

    Google Scholar 

  91. Rozans M, Dreisbach A, Lertora JJ, et al.: Palliative uses of methylphenidate in patients with cancer: a review. J Clin Oncol 2002, 20:335–339.

    Article  PubMed  CAS  Google Scholar 

  92. Meyers CA, M.A. W, Valentine AD, et al.: Methylphenidate therapy improve cognition, mood, and function of brain tumor patients. J Clin Oncol 1998, 16:2522–2527.

    PubMed  CAS  Google Scholar 

  93. DeLong R, Friedman HP, Friedman N, et al.: Methylphenidate in neuropsychological sequelae of radiotherapy and chemotherapy of childhood brain tumors and leukemia. J Child Neurol 1992, 7:462–463.

    Article  PubMed  CAS  Google Scholar 

  94. Thompson SJ, Leigh L, Christensen R, et al.: Immediate neurocognitive effects of methylphenidate on learning-impaired survivors of childhood cancer. J Clin Oncol 2001, 19:1802–1808.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McAllister, T.W., Ahles, T.A., Saykin, A.J. et al. Cognitive effects of cytotoxic cancer chemotherapy: Predisposing risk factors and potential treatments. Curr Psychiatry Rep 6, 364–371 (2004). https://doi.org/10.1007/s11920-004-0023-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11920-004-0023-y

Keywords

Navigation