Skip to main content

Advertisement

Log in

Sclerosing Bone Dysplasias: Leads Toward Novel Osteoporosis Treatments

  • Skeletal Genetics (ML Johnson and S Ralston, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Sclerosing bone dysplasias are a group of rare, monogenic disorders characterized by increased bone density resulting from the disturbance in the fragile equilibrium between bone formation and resorption. Over the last decade, major contributions have been made toward better understanding of the pathogenesis of these conditions. These studies provided us with important insights into the bone biology and yielded the identification of numerous drug targets for the prevention and treatment of osteoporosis. Here, we review this heterogeneous group of disorders focusing on their utility in the development of novel osteoporosis therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet. 2011;377(9773):1276–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Ferrari S. Human genetics of osteoporosis. Best Pract Res Clin Endocrinol Metab. 2008;22(5):723–35.

    Article  CAS  PubMed  Google Scholar 

  3. Kornak U et al. Mutations in the a3 subunit of the vacuolar H(+)-ATPase cause infantile malignant osteopetrosis. Hum Mol Genet. 2000;9(13):2059–63.

    Article  CAS  PubMed  Google Scholar 

  4. Sobacchi C et al. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol. 2013;9(9):522–36. Comprehensive and up-to-date review on the heterogeneous group of Osteopetroses.

    Article  CAS  PubMed  Google Scholar 

  5. Kornak U et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell. 2001;104(2):205–15.

    Article  CAS  PubMed  Google Scholar 

  6. Chalhoub N et al. Grey-lethal mutation induces severe malignant autosomal recessive osteopetrosis in mouse and human. Nat Med. 2003;9:399–406.

    Article  CAS  PubMed  Google Scholar 

  7. Sly WS et al. Carbonic anhydrase II deficiency in 12 families with the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. N Engl J Med. 1985;313:139–45.

    Article  CAS  PubMed  Google Scholar 

  8. Guerrini MM et al. Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am J Hum Genet. 2008;83(1):64–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Sobacchi C et al. Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat Genet. 2007;39(8):960–2.

    Article  CAS  PubMed  Google Scholar 

  10. Smahi A et al. The NF-kappaB signaling pathway in human diseases: from incontinentia pigmenti to ectodermal dysplasias and immune-deficiency syndromes. Hum Mol Genet. 2002;11(20):2371–5.

    Article  CAS  PubMed  Google Scholar 

  11. Van Wesenbeeck L et al. Involvement of PLEKHM1 in osteoclastic vesicular transport and osteopetrosis in incisors absent rats and humans. J Clin Invest. 2007;117(4):919–30.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Aker M et al. An SNX10 mutation causes malignant osteopetrosis of infancy. J Med Genet. 2012;49(4):221–6.

    Article  CAS  PubMed  Google Scholar 

  13. Cleiren E et al. Albers-Schonberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the ClCN7 chloride channel gene. Hum Mol Genet. 2001;10(25):2861–7.

    Article  CAS  PubMed  Google Scholar 

  14. Bollerslev J et al. Autosomal dominant osteopetrosis revisited: lessons from recent studies. Eur J Endocrinol. 2013;169(2):R39–57.

    Article  CAS  PubMed  Google Scholar 

  15. Gelb BD et al. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 1996;273(5279):1236–8.

    Article  CAS  PubMed  Google Scholar 

  16. Little RD et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet. 2002;70(1):11–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Boyden LM et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med. 2002;346(20):1513–21.

    Article  CAS  PubMed  Google Scholar 

  18. Ai M et al. Clinical and molecular findings in osteoporosis-pseudoglioma syndrome. Am J Hum Genet. 2005;77(5):741–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Balemans W et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet. 2001;10(5):537–43.

    Article  CAS  PubMed  Google Scholar 

  20. Brunkow ME et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet. 2001;68(3):577–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Leupin O et al. Bone overgrowth-associated mutations in the LRP4 gene impair sclerostin facilitator function. J Biol Chem. 2011;286(22):19489–500.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Balemans W et al. Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Genet. 2002;39(2):91–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Kim SJ et al. Identification of signal peptide domain SOST mutations in autosomal dominant craniodiaphyseal dysplasia. Hum Genet. 2011;129(5):497–502.

    Article  CAS  PubMed  Google Scholar 

  24. Jenkins ZA et al. Germline mutations in WTX cause a sclerosing skeletal dysplasia but do not predispose to tumorigenesis. Nat Genet. 2009;41(1):95–100.

    Article  CAS  PubMed  Google Scholar 

  25. Nurnberg P et al. Heterozygous mutations in ANKH, the human ortholog of the mouse progressive ankylosis gene, results in craniometaphyseal dysplasia. Nat Genet. 2001;28(1):37–41.

    CAS  PubMed  Google Scholar 

  26. Reichenberger E et al. Autosomal dominant craniometaphyseal dysplasia is caused by mutations in the transmembrane protein ANK. Am J Hum Genet. 2001;68(6):1321–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Hu Y et al. A novel autosomal recessive GJA1 missense mutation linked to Craniometaphyseal dysplasia. PLoS One. 2013;8(8):e73576.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Janssens K et al. Mutations in the gene encoding the latency-associated peptide of TGF-beta 1 cause Camurati-Engelmann disease. Nat Genet. 2000;26(3):273–5.

    Article  CAS  PubMed  Google Scholar 

  29. Kinoshita A et al. Domain-specific mutations in TGFB1 result in Camurati-Engelmann disease. Nat Genet. 2000;26(1):19–20.

    Article  CAS  PubMed  Google Scholar 

  30. Hellemans J et al. Loss-of-function mutations in LEMD3 result in osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis. Nat Genet. 2004;36(11):1213–8.

    Article  CAS  PubMed  Google Scholar 

  31. Mumm S et al. Deactivating germline mutations in LEMD3 cause osteopoikilosis and Buschke-Ollendorff syndrome, but not sporadic melorheostosis. J Bone Miner Res. 2007;22(2):243–50.

    Article  CAS  PubMed  Google Scholar 

  32. Ababneh FK et al. Hereditary deletion of the entire FAM20C gene in a patient with Raine syndrome. Am J Med Genet A. 2013;161A(12):3155–60.

    Article  PubMed  Google Scholar 

  33. Wang X et al. Inactivation of a novel FGF23 regulator, FAM20C, leads to hypophosphatemic rickets in mice. PLoS Genet. 2012;8(5):e1002708.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Singer FR, Mills BG. Evidence for a viral etiology of Paget's disease of bone. Clin Orthop Relat Res. 1983;178:245–51.

    PubMed  Google Scholar 

  35. Laurin N et al. Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. Am J Hum Genet. 2002;70(6):1582–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Hocking LJ et al. Domain-specific mutations in sequestosome 1 (SQSTM1) cause familial and sporadic Paget's disease. Hum Mol Genet. 2002;11(22):2735–9.

    Article  CAS  PubMed  Google Scholar 

  37. Johnson JO et al. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron. 2010;68(5):857–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Whyte MP et al. Osteoprotegerin deficiency and juvenile Paget's disease. N Engl J Med. 2002;347(3):175–84.

    Article  CAS  PubMed  Google Scholar 

  39. Hughes AE et al. Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat Genet. 2000;24(1):45–8.

    Article  CAS  PubMed  Google Scholar 

  40. Whyte MP, Hughes AE. Expansile skeletal hyperphosphatasia is caused by a 15-base pair tandem duplication in TNFRSF11A encoding RANK and is allelic to familial expansile osteolysis. J Bone Miner Res. 2002;17(1):26–9.

    Article  CAS  PubMed  Google Scholar 

  41. Whyte MP et al. Expansile skeletal hyperphosphatasia: a new familial metabolic bone disease. J Bone Miner Res. 2000;15(12):2330–44.

    Article  CAS  PubMed  Google Scholar 

  42. Boudin E et al. No mutations in the serotonin related TPH1 and HTR1B genes in patients with monogenic sclerosing bone disorders. Bone. 2013;55(1):52–6.

    Article  CAS  PubMed  Google Scholar 

  43. Boudin E et al. Mutations in sFRP1 or sFRP4 are not a common cause of craniotubular hyperostosis. Bone. 2013;52(1):292–5.

    Article  CAS  PubMed  Google Scholar 

  44. Pangrazio A et al. Exome sequencing identifies CTSK mutations in patients originally diagnosed as intermediate osteopetrosis. Bone. 2014;59:122–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Lazarus S, Zankl A, Duncan EL. Next-generation sequencing: a frameshift in skeletal dysplasia gene discovery. Osteoporos Int. 2014;25(2):407–22. Reviews the insights into Sclerosing Bone Dysplasias provided by novel sequencing techniques.

    Article  CAS  PubMed  Google Scholar 

  46. Borra VM et al. Localization of the gene for hyperostosis cranialis interna to chromosome 8p21 with analysis of three candidate genes. Calcif Tissue Int. 2013;93(1):93–100.

    Article  CAS  PubMed  Google Scholar 

  47. Borra VM et al. Localization of the gene for X-linked calvarial hyperostosis to chromosome Xq27.3-Xqter. Bone. 2014;58:67–71.

    Article  CAS  PubMed  Google Scholar 

  48. Pagon RA, Beckwith JB, Ward BH. Calvarial hyperostosis: a benign X-linked recessive disorder. Clin Genet. 1986;29(1):73–8.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang Y et al. Novel and recurrent germline LEMD3 mutations causing Buschke-Ollendorff syndrome and osteopoikilosis but not isolated melorheostosis. Clin Genet. 2009;75(6):556–61.

    Article  CAS  PubMed  Google Scholar 

  50. Kasapkara CS et al. An extremely rare case: osteosclerotic metaphyseal dysplasia. Genet Couns. 2013;24(1):69–74.

    CAS  PubMed  Google Scholar 

  51. Yao AL, Camacho PM. Osteomesopyknosis: a case report and review of sclerosing bone disorders. Endocr Pract. 2014:1–14. doi:10.4158/EP13352.CR.

  52. Das S, Crockett JC. Osteoporosis - a current view of pharmacologic prevention and treatment. Drug Des Devel Ther. 2013;7:435–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Leder BZ, et al. Two years of denosumab and teriparatide administration in postmenopausal women with osteoporosis (The DATA Extension Study): a randomized controlled trial. J Clin Endocrinol Metab. 2014;99(5):1694–700.

  54. Schaller S et al. The chloride channel inhibitor NS3736 [corrected] prevents bone resorption in ovariectomized rats without changing bone formation. J Bone Miner Res. 2004;19(7):1144–53.

    Article  CAS  PubMed  Google Scholar 

  55. Qin A et al. V-ATPases in osteoclasts: structure, function and potential inhibitors of bone resorption. Int J Biochem Cell Biol. 2012;44(9):1422–35.

    Article  CAS  PubMed  Google Scholar 

  56. Saftig P et al. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci U S A. 1998;95(23):13453–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Duong LT. Therapeutic inhibition of cathepsin K-reducing bone resorption while maintaining bone formation. Bonekey Reports, 20. doi:10.1038/bonekey.2012.67.

  58. Langdahl B et al. Odanacatib in the treatment of postmenopausal women with low bone mineral density: 5 years of continued therapy in a phase 2 study. J Bone Miner Res. 2012;27(11):2251–8.

    Article  CAS  PubMed  Google Scholar 

  59. Sims NA, Ng KW. Implications of osteoblast-osteoclast interactions in the management of osteoporosis by antiresorptive agents denosumab and odanacatib. Curr Osteoporos Rep. 2014;12(1):98–106.

    Article  PubMed  Google Scholar 

  60. Chen M et al. Emerging therapeutic targets for osteoporosis treatment. Expert Opin Ther Target. 2014;18(7):817–831.

  61. Ng KW, Martin TJ. New therapeutics for osteoporosis. Curr Opin Pharmacol. 2014;16C:58–63.

    Article  Google Scholar 

  62. Boudin E et al. The role of extracellular modulators of canonical Wnt signaling in bone metabolism and diseases. Semin Arthritis Rheum. 2013;43(2):220–40.

    Article  CAS  PubMed  Google Scholar 

  63. McClung MR et al. Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med. 2014;370(5):412–20. The most recent report on the clinical trials of the most promising osteoporosis treatment in development.

    Article  CAS  PubMed  Google Scholar 

  64. Kedlaya R et al. Sclerostin inhibition reverses skeletal fragility in an Lrp5-deficient mouse model of OPPG syndrome. Sci Transl Med. 2013;5(211):211ra158.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Sinder BP et al. Sclerostin antibody improves skeletal parameters in a Brtl/+mouse model of osteogenesis imperfecta. J Bone Miner Res. 2013;28(1):73–80. Supports the therapeutic effect of sclerostin antibody in murine model of Osteogenesis Imperfecta. Demonstrates the diversity of this therapeutic agent.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Chang MK et al. Reversing LRP5-dependent osteoporosis and SOST deficiency-induced sclerosing bone disorders by altering WNT signaling activity. J Bone Miner Res. 2014;29(1):29–42. Comprehensive studies providing insights into the biology of sclerostin inhibition.

    Article  CAS  PubMed  Google Scholar 

  67. van Lierop AH et al. Serum Dickkopf 1 levels in sclerostin deficiency. J Clin Endocrinol Metab. 2014;99(2):E252–6.

    Article  PubMed  Google Scholar 

  68. Morvan F et al. Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res. 2006;21(6):934–45.

    Article  CAS  PubMed  Google Scholar 

  69. Moore WJ et al. Modulation of Wnt signaling through inhibition of secreted frizzled-related protein I (sFRP-1) with N-substituted piperidinyl diphenylsulfonyl sulfonamides: part II. Bioorg Med Chem. 2010;18(1):190–201.

    Article  CAS  PubMed  Google Scholar 

  70. Moore WJ et al. Modulation of Wnt signaling through inhibition of secreted frizzled-related protein I (sFRP-1) with N-substituted piperidinyl diphenylsulfonyl sulfonamides. J Med Chem. 2009;52(1):105–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research relevant for this review was supported by a grant from the University of Antwerp (TOP-BOF) and 2 research grants (G.0065.10N and G.0197.12N) from the Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO) to W. Van Hul. I. Fijałkowski holds a pre-doctoral specialization scholarship from the “Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen)”. E. Boudin holds a post-doctoral fellowship of the FWO (Fund for Scientific Research) Vlaanderen.

Compliance with Ethics Guidelines

Conflict of Interest

I. Fijalkowski, E. Boudin, G. Mortier, and W. Van Hul declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

All studies by the authors involving animal and/or human subjects were performed after approval by the appropriate institutional review boards. When required, written informed consent was obtained from all participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim Van Hul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fijalkowski, I., Boudin, E., Mortier, G. et al. Sclerosing Bone Dysplasias: Leads Toward Novel Osteoporosis Treatments. Curr Osteoporos Rep 12, 243–251 (2014). https://doi.org/10.1007/s11914-014-0220-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-014-0220-5

Keywords

Navigation