Skip to main content

Advertisement

Log in

Neuroinflammation and Non-motor Symptoms: The Dark Passenger of Parkinson’s Disease?

  • Movement Disorders (SA Factor, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Generally speaking, inflammation as a key piece to the Parkinson’s disease (PD) puzzle is a relatively new concept. Acceptance of this concept has gained ground as studies by various researchers have demonstrated the potential of mitigating nigral cell death by curtailing inflammation in animal models of PD. We propose that the significance of inflammation in PD pathology may extend beyond the nigrostriatal region. In the current review, we present an argument for this based on the Braak staging and discuss how inflammation might contribute to the development of non-motor PD symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Braak H, Del Tredici K. Invited article: nervous system pathology in sporadic Parkinson disease. Neurology. 2008;70(20):1916–25.

    Article  PubMed  Google Scholar 

  2. Braak H, Ghebremedhin E, Rüb U, et al. Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res. 2004;318(1):121–34.

    Article  PubMed  Google Scholar 

  3. Hawkes CH, Del Tredici K, Braak H. Parkinson’s disease: a dual-hit hypothesis. Neuropathol Appl Neurobiol. 2007;33(6):599–614.

    Article  PubMed  CAS  Google Scholar 

  4. Hawkes CH, Del Tredici K, Braak H. A timeline for Parkinson’s disease. Parkinsonism Relat Disord. 2010;16(2):79–84.

    Article  PubMed  Google Scholar 

  5. • Jang H, Boltz D, Sturm-Ramirez K, et al. Highly pathogenic H5N1 influenza virus can enter the central nervous system and induce neuroinflammation and neurodegeneration. Proc Natl Acad Sci U S A. 2009;106(33):14063–8. This study shows direct evidence for Braak staging and that highly pathogenic H5N1 can recapitulate many PD features.

    Article  PubMed  CAS  Google Scholar 

  6. Tansey MG, McCoy MK, Frank-Cannon TC. Neuroinflammatory mechanisms in Parkinson’s disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol. 2007;208(1):1–25.

    Article  PubMed  CAS  Google Scholar 

  7. Whitton PS. Inflammation as a causative factor in the aetiology of Parkinson’s disease. Br J Pharmacol. 2007;150(8):963–76.

    Article  PubMed  CAS  Google Scholar 

  8. McCoy MK, Tansey MG. TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation. 2008;5:45.

    Article  PubMed  Google Scholar 

  9. McGeer PL, McGeer EG. Glial reactions in Parkinson’s disease. Mov Disord. 2008;23(4):474–83.

    Article  PubMed  Google Scholar 

  10. Hirsch EC, Hunot S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 2009;8(4):382–97.

    Article  PubMed  CAS  Google Scholar 

  11. Barnum CJ, Tansey MG. Modeling neuroinflammatory pathogenesis of Parkinson’s disease. Prog Brain Res. 2010;184:113–132.12.

    Article  PubMed  CAS  Google Scholar 

  12. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010;140(6):918–34.

    Article  PubMed  CAS  Google Scholar 

  13. Tansey MG, Goldberg MS. Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis. 2010;37(3):510–8.

    Article  PubMed  CAS  Google Scholar 

  14. •• Hamza TH, Zabetian CP, Tenesa A, et al. Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s disease. Nat Genet. 2010;42(9):781–5. Provides additional evidence that genes associated with PD have inflammatory consequences.

    Article  PubMed  CAS  Google Scholar 

  15. Boss JM, Jensen PE. Transcriptional regulation of the MHC class II antigen presentation pathway. Curr Opin Immunol. 2003;15(1):105–11.

    Article  PubMed  CAS  Google Scholar 

  16. Do CB, Tung JY, Dorfman E, et al. Web-based genome-wide association study identifies two novel loci and a substantial genetic component for Parkinson’s disease. PLoS Genet. 2011;7(6):e1002141.

    Article  PubMed  CAS  Google Scholar 

  17. Guo Y, Deng X, Zheng W, et al. HLA rs3129882 variant in chinese han patients with late-onset sporadic Parkinson disease. Neurosci Lett. 2011;501(3):185–7.

    Article  PubMed  CAS  Google Scholar 

  18. Hill-Burns EM, Factor SA, Zabetian CP, et al. Evidence for more than one Parkinson’s disease-associated variant within the HLA region. PLoS One. 2011;6(11):e27109.

    Article  PubMed  CAS  Google Scholar 

  19. Nalls MA, Plagnol V, Hernandez DG, et al. Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet. 2011;377(9766):641–9.

    Article  PubMed  Google Scholar 

  20. Puschmann A, Verbeeck C, Heckman MG, et al. Human leukocyte antigen variation and Parkinson’s disease. Parkinsonism Relat Disord. 2011;17(5):376–8.

    Article  PubMed  Google Scholar 

  21. Simon-Sanchez J, van Hilten JJ, van de Warrenburg B, et al. Genome-wide association study confirms extant PD risk loci among the Dutch. Eur J Hum Genet. 2011;19(6):655–61.

    Article  PubMed  CAS  Google Scholar 

  22. Chiang HL, Lee-Chen GJ, Chen CM, et al. Genetic analysis of HLA-DRA region variation in Taiwanese Parkinson’s disease. Parkinsonism Relat Disord 2012.

  23. Kruger R, Hardt C, Tschentscher F, et al. Genetic analysis of immunomodulating factors in sporadic Parkinson’s disease. J Neural Transm. 2000;107(5):553–62.

    Article  PubMed  CAS  Google Scholar 

  24. Nishimura M, Mizuta I, Mizuta E, et al. Tumor necrosis factor gene polymorphisms in patients with sporadic Parkinson’s disease. Neurosci Lett. 2001;311(1):1–4.

    Article  PubMed  CAS  Google Scholar 

  25. Wu YR, Feng IH, Lyu RK, et al. Tumor necrosis factor-alpha promoter polymorphism is associated with the risk of Parkinson’s disease. Am J Med Genet B Neuropsychiatr Genet. 2007;144B(3):300–4.

    Article  PubMed  CAS  Google Scholar 

  26. Wahner AD, Sinsheimer JS, Bronstein JM, et al. Inflammatory cytokine gene polymorphisms and increased risk of Parkinson disease. Arch Neurol. 2007;64(6):836–40.

    Article  PubMed  Google Scholar 

  27. Bialecka M, Klodowska-Duda G, Kurzawski M, et al. Interleukin-10 (IL10) and tumor necrosis factor alpha (TNF) gene polymorphisms in Parkinson’s disease patients. Parkinsonism Relat Disord. 2008;14(8):636–40.

    Article  PubMed  CAS  Google Scholar 

  28. Wu YR, Chen CM, Hwang JC, et al. Interleukin-1 alpha polymorphism has influence on late-onset sporadic Parkinson’s disease in Taiwan. J Neural Transm. 2007;114(9):1173–7.

    Article  PubMed  CAS  Google Scholar 

  29. Frank-Cannon TC, Alto LT, McAlpine FE, et al. Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener. 2009;4:47.

    Article  PubMed  Google Scholar 

  30. Corti O, Lesage S, Brice A. What genetics tells us about the causes and mechanisms of Parkinson’s disease. Physiol Rev. 2011;91(4):1161–218.

    Article  PubMed  CAS  Google Scholar 

  31. Shimura H, Hattori N, Kubo S, et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet. 2000;25(3):302–5.

    Article  PubMed  CAS  Google Scholar 

  32. Narendra D, Tanaka A, Suen DF, et al. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol. 2008;183(5):795–803.

    Article  PubMed  CAS  Google Scholar 

  33. Goldberg MS, Fleming SM, Palacino JJ, et al. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem. 2003;278(44):43628–35.

    Article  PubMed  CAS  Google Scholar 

  34. Zhu XR, Maskri L, Herold C, et al. Non-motor behavioural impairments in parkin-deficient mice. Eur J Neurosci. 2007;26(7):1902–11.

    Article  PubMed  Google Scholar 

  35. Frank-Cannon TC, Tran T, Ruhn KA, et al. Parkin deficiency increases vulnerabiity to inflammation-related nigral degeneration. J Neurosci. 2008;28(43):10825–34.

    Article  PubMed  CAS  Google Scholar 

  36. Tran TA, Nguyen AD, Chang J, et al. Lipopolysaccharide and tumor necrosis factor regulate Parkin expression via nuclear factor-kappa B. PLoS One. 2011;6(8):e23660.

    Article  PubMed  CAS  Google Scholar 

  37. Hakimi M, Selvanantham T, Swinton E, et al. Parkinson’s disease-linked LRRK2 is expressed in circulating and tissue immune cells and upregulated following recognition of microbial structures. J Neural Transm. 2011;118(5):795–808.

    Article  PubMed  CAS  Google Scholar 

  38. •• Liu Z, Lee J, Krummey S, et al. The kinase LRRK2 is a regulator of the transcription factor NFAT that modulates the severity of inflammatory bowel disease. Nat Immunol. 2011;12(11):1063–70. Provides additional evidence that genes associated with PD have inflammatory consequences.

    Article  PubMed  CAS  Google Scholar 

  39. Monticelli S, Rao A. NFAT1 and NFAT2 are positive regulators of IL-4 gene transcription. Eur J Immunol. 2002;32(10):2971–8.

    Article  PubMed  CAS  Google Scholar 

  40. Menza M, Dobkin RD, Marin H, et al. The role of inflammatory cytokines in cognition and other non-motor symptoms of Parkinson’s disease. Psychosomatics. 2010;51(6):474–9.

    PubMed  CAS  Google Scholar 

  41. Blaser MJ. Who are we? Indigenous microbes and the ecology of human diseases. EMBO Rep. 2006;7(10):956–60.

    Article  PubMed  CAS  Google Scholar 

  42. Nielsen HH, Qiu J, Friis S, et al. Treatment for Helicobacter pylori infection and risk of parkinson’s disease in Denmark. Eur J Neurol 2012.

  43. Bjarnason IT, Charlett A, Dobbs RJ, et al. Role of chronic infection and inflammation in the gastrointestinal tract in the etiology and pathogenesis of idiopathic parkinsonism. Part 2: response of facets of clinical idiopathic parkinsonism to helicobacter pylori eradication. A randomized, double-blind, placebo-controlled efficacy study. Helicobacter. 2005;10(4):276–87.

    Article  PubMed  CAS  Google Scholar 

  44. Dobbs RJ, Dobbs SM, Weller C, et al. Helicobacter hypothesis for idiopathic parkinsonism: before and beyond. Helicobacter. 2008;13(5):309–22.

    Article  PubMed  Google Scholar 

  45. Forsyth CB, Shannon KM, Kordower JH, et al. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS One. 2011;6(12):e28032.

    Article  PubMed  CAS  Google Scholar 

  46. Savica R, Carlin JM, Grossardt BR, et al. Medical records documentation of constipation preceding Parkinson disease: a case–control study. Neurology. 2009;73(21):1752–8.

    Article  PubMed  CAS  Google Scholar 

  47. Leentjens AF, Van den Akker M, Metsemakers JF, et al. Higher incidence of depression preceding the onset of Parkinson’s disease: a register study. Mov Disord. 2003;18(4):414–8.

    Article  PubMed  Google Scholar 

  48. Ishihara-Paul L, Wainwright NW, Khaw KT, et al. Prospective association between emotional health and clinical evidence of Parkinson’s disease. Eur J Neurol. 2008;15(11):1148–54.

    Article  PubMed  CAS  Google Scholar 

  49. Blonder LX, Slevin JT. Emotional dysfunction in Parkinson’s disease. Behav Neurol. 2011;24(3):201–17.

    PubMed  Google Scholar 

  50. Aarsland D, Påhlhagen S, Ballard CG, et al. Depression in Parkinson disease–epidemiology, mechanisms and management. Nat Rev Neurol. 2012;8(1):35–47.

    Article  CAS  Google Scholar 

  51. Hinnell C, Hurt CS, Landau S, et al. Nonmotor versus motor symptoms: how much do they matter to health status in Parkinson’s disease? Mov Disord. 2012;27(2):236–41.

    Article  PubMed  Google Scholar 

  52. Musselman DL, Lawson DH, Gumnick JF, et al. Paroxetine for the prevention of depression induced by high-dose interferon alfa. N Engl J Med. 2001;344(13):961–6.

    Article  PubMed  CAS  Google Scholar 

  53. Raedler TJ. Inflammatory mechanisms in major depressive disorder. Curr Opin Psychiatry. 2011;24(6):519–25.

    PubMed  Google Scholar 

  54. Raison CL, Miller AH. Is depression an inflammatory disorder? Curr Psychiatry Rep. 2011;13(6):467–75.

    Article  PubMed  Google Scholar 

  55. Harms A, Barnum CJ, Ruhn KA, et al. Delayed dominant-negative TNF gene therapy halts progressive loss of nigral dopaminergic neurons in a rat model of Parkinson’s disease. Mol Ther. 2010;19(1):46–52.

    Article  PubMed  Google Scholar 

  56. McCoy MK, Martinez TN, Ruhn KA, et al. Blocking soluble tumor necrosis factor signaling with dominant-negative tumor necrosis factor inhibitor attenuates loss of dopaminergic neurons in models of Parkinson’s disease. J Neurosci. 2006;26(37):9365–75.

    Article  PubMed  CAS  Google Scholar 

  57. McCoy MK, Ruhn KA, Martinez TN, et al. Intranigral lentiviral delivery of dominant-negative TNF attenuates neurodegeneration and behavioral deficits in hemiparkinsonian rats. Mol Ther. 2008;16(9):1572–9.

    Article  PubMed  CAS  Google Scholar 

  58. Harms AS, Lee JK, Nguyen TA, et al. Regulation of microglia effector functions by tumor necrosis factor signaling. Glia. 2012;60(2):189–202.

    Article  PubMed  Google Scholar 

  59. Dowlati Y, Herrmann N, Swardfager W, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67(5):446–57.

    Article  PubMed  CAS  Google Scholar 

  60. Pålhagen S, Qi H, Mårtensson B, et al. Monoamines, BDNF, IL-6 and corticosterone in CSF in patients with Parkinson’s disease and major depression. J Neurol. 2010;257(4):524–32.

    Article  PubMed  Google Scholar 

  61. Haroon E, Raison CL, Miller AH. Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 2011.

  62. Chung YC, Kim SR, Park JY, et al. Fluoxetine prevents MPTP-induced loss of dopaminergic neurons by inhibiting microglial activation. Neuropharmacology. 2011;60(6):963–74.

    Article  PubMed  CAS  Google Scholar 

  63. Chung YC, Kim SR, Jin BK. Paroxetine prevents loss of nigrostriatal dopaminergic neurons by inhibiting brain inflammation and oxidative stress in an experimental model of Parkinson’s disease. J Immunol. 2010;185(2):1230–7.

    Article  PubMed  CAS  Google Scholar 

  64. Chung ES, Chung YC, Bok E, et al. Fluoxetine prevents LPS-induced degeneration of nigral dopaminergic neurons by inhibiting microglia-mediated oxidative stress. Brain Res. 2010;1363:143–50.

    Article  PubMed  CAS  Google Scholar 

  65. Vgontzas AN, Bixler EO, Lin HM, et al. IL-6 and its circadian secretion in humans. Neuroimmunomodulation. 2005;12(3):131–40.

    Article  PubMed  CAS  Google Scholar 

  66. Vgontzas AN, Papanicolaou DA, Bixler EO, et al. Circadian interleukin-6 secretion and quantity and depth of sleep. J Clin Endocrinol Metab. 1999;84(8):2603–7.

    Article  PubMed  CAS  Google Scholar 

  67. Irwin M, McClintick J, Costlow C, et al. Partial night sleep deprivation reduces natural killer and cellular immune responses in humans. FASEB J. 1996;10(5):643–53.

    PubMed  CAS  Google Scholar 

  68. Shearer WT, Reuben JM, Mullington JM, et al. Soluble TNF-alpha receptor 1 and IL-6 plasma levels in humans subjected to the sleep deprivation model of spaceflight. J Allergy Clin Immunol. 2001;107(1):165–70.

    Article  PubMed  CAS  Google Scholar 

  69. van Leeuwen WM, Lehto M, Karisola P, et al. Sleep restriction increases the risk of developing cardiovascular diseases by augmenting proinflammatory responses through IL-17 and CRP. PLoS One. 2009;4(2):e4589.

    Article  PubMed  Google Scholar 

  70. Chennaoui M, Sauvet F, Drogou C, et al. Effect of one night of sleep loss on changes in tumor necrosis factor alpha (TNF-alpha) levels in healthy men. Cytokine. 2011;56(2):318–24.

    Article  PubMed  CAS  Google Scholar 

  71. Vgontzas AN, Papanicolaou DA, Bixler EO, et al. Elevation of plasma cytokines in disorders of excessive daytime sleepiness: role of sleep disturbance and obesity. J Clin Endocrinol Metab. 1997;82(5):1313–6.

    Article  PubMed  CAS  Google Scholar 

  72. Vgontzas AN, Zoumakis M, Papanicolaou DA, et al. Chronic insomnia is associated with a shift of interleukin-6 and tumor necrosis factor secretion from nighttime to daytime. Metabolism. 2002;51(7):887–92.

    Article  PubMed  CAS  Google Scholar 

  73. Bower JE, Ganz PA, Irwin MR, et al. Inflammation and behavioral symptoms after breast cancer treatment: do fatigue, depression, and sleep disturbance share a common underlying mechanism? J Clin Oncol. 2011;29(26):3517–22.

    Article  PubMed  Google Scholar 

  74. Kim HJ, Barsevick AM, Fang CY, et al. Common biological pathways underlying the psychoneurological symptom cluster in cancer patients. Cancer Nurs 2012.

  75. Chen R, Yin Y, Zhao Z, et al. Elevation of serum TNF-alpha levels in mild and moderate Alzheimer patients with daytime sleepiness. J Neuroimmunol, 2012.

  76. Irwin MR, Carrillo C, Olmstead R. Sleep loss activates cellular markers of inflammation: sex differences. Brain Behav Immun. 2010;24(1):54–7.

    Article  PubMed  CAS  Google Scholar 

  77. Abad VC, Sarinas PS, Guilleminault C. Sleep and rheumatologic disorders. Sleep Med Rev. 2008;12(3):211–28.

    Article  PubMed  Google Scholar 

  78. Wells G, Li T, Tugwell P. Investigation into the impact of abatacept on sleep quality in patients with rheumatoid arthritis, and the validity of the MOS-sleep questionnaire sleep disturbance scale. Ann Rheum Dis. 2010;69(10):1768–73.

    Article  PubMed  Google Scholar 

  79. Deodhar A, Braun J, Inman RD, et al. Golimumab reduces sleep disturbance in patients with active ankylosing spondylitis: results from a randomized, placebo-controlled trial. Arthritis Care Res (Hoboken). 2010;62(9):1266–71.

    Article  Google Scholar 

  80. Fragiadaki K, Tektonidou MG, Konsta M, et al. Sleep disturbances and interleukin 6 receptor inhibition in rheumatoid arthritis. J Rheumatol. 2012;39(1):60–2.

    Article  PubMed  CAS  Google Scholar 

  81. Williamson LL, Sholar PW, Mistry RS, et al. Microglia and memory: modulation by early-life infection. J Neurosci. 2011;31(43):15511–21.

    Article  PubMed  CAS  Google Scholar 

  82. Fidalgo AR, Cibelli M, White JP, et al. Systemic inflammation enhances surgery-induced cognitive dysfunction in mice. Neurosci Lett. 2011;498(1):63–6.

    Article  PubMed  CAS  Google Scholar 

  83. Cibelli M, Fidalgo AR, Terrando N, et al. Role of interleukin-1beta in postoperative cognitive dysfunction. Ann Neurol. 2010;68(3):360–8.

    Article  PubMed  CAS  Google Scholar 

  84. Terrando N, Monaco C, Ma D, et al. Tumor necrosis factor-alpha triggers a cytokine cascade yielding postoperative cognitive decline. Proc Natl Acad Sci U S A. 2010;107(47):20518–22.

    Article  PubMed  CAS  Google Scholar 

  85. Terrando N, Eriksson LI, Ryu JK, et al. Resolving postoperative neuroinflammation and cognitive decline. Ann Neurol. 2011;70(6):986–95.

    Article  PubMed  CAS  Google Scholar 

  86. Jefferson AL, Massaro JM, Beiser AS, et al. Inflammatory markers and neuropsychological functioning: the framingham heart study. Neuroepidemiology. 2011;37(1):21–30.

    Article  PubMed  Google Scholar 

  87. Carmeli E, Imam B, Bachar A, Merrick J. Inflammation and oxidative stress as biomarkers of premature aging in persons with intellectual disability. Res Dev Disabil. 2012;33(2):369–75.

    Article  PubMed  Google Scholar 

  88. Kamer AR, Morse DE, Holm-Pedersen P, et al. Periodontal inflammation in relation to cognitive function in an older adult danish population. J Alzheimers Dis. 2012;28(3):613–24.

    PubMed  Google Scholar 

  89. Kitazawa M, Cheng D, Tsukamoto MR, et al. Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal beta-catenin pathway function in an Alzheimer’s disease model. J Immunol. 2011;187(12):6539–49.

    Article  PubMed  CAS  Google Scholar 

  90. Parachikova A, Vasilevko V, Cribbs DH, et al. Reductions in amyloid-beta-derived neuroinflammation, with minocycline, restore cognition but do not significantly affect tau hyperphosphorylation. J Alzheimers Dis. 2010;21(2):527–42.

    PubMed  CAS  Google Scholar 

  91. Fenelon G, Mahieux F, huon R, Ziegler M. Hallucinations in Parkinson’s disease: prevalence, phenomenology and risk factors. Brain. 2000;123(Pt 4):733–45.

    Article  PubMed  Google Scholar 

  92. Zahodne LB, Fernandez HH. Pathophysiology and treatment of psychosis in Parkinson’s disease: a review. Drugs Aging. 2008;25(8):665–82.

    Article  PubMed  CAS  Google Scholar 

  93. Meyer U, Weiner I, McAlonan GM, Feldon J. The neuropathological contribution of prenatal inflammation to schizophrenia. Expert Rev Neurother. 2011;11(1):29–32.

    Article  PubMed  CAS  Google Scholar 

  94. Mondelli V, Cattaneo A, Belvederi Murri M, et al. Stress and inflammation reduce brain-derived neurotrophic factor expression in first-episode psychosis: a pathway to smaller hippocampal volume. J Clin Psychiatry. 2011;72(12):1677–84.

    Article  PubMed  Google Scholar 

  95. Suvisaari J, Loo BM, Saarni SE, et al. Inflammation in psychotic disorders: a population-based study. Psychiatry Res. 2011;189(2):305–11.

    Article  PubMed  Google Scholar 

  96. Arnett HA, Mason J, Marino M, et al. TNF alpha promotes proliferation of oligodendrocyte progenitors and remyelination. Nat Neurosci. 2001;4(11):1116–22.

    Article  PubMed  CAS  Google Scholar 

  97. Garcia I, Olleros ML, Quesniaux VF, et al. Roles of soluble and membrane TNF and related ligands in mycobacterial infections: effects of selective and non-selective TNF inhibitors during infection. Adv Exp Med Biol. 2011;691:187–201.

    Article  PubMed  CAS  Google Scholar 

  98. Muller N. COX-2 inhibitors as antidepressants and antipsychotics: clinical evidence. Curr Opin Investig Drugs. 2010;11(1):31–42.

    PubMed  Google Scholar 

  99. Szabó N, Kincses ZT, Toldi J, Vécsei L. Altered tryptophan metabolism in Parkinson’s disease: a possible novel therapeutic approach. J Neurol Sci. 2011;310(1–2):256–60.

    Article  PubMed  Google Scholar 

  100. Barnum CJ, Eskow KL, Dupre K, et al. Exogenous corticosterone reduces L-DOPA-induced dyskinesia in the hemi-parkinsonian rat: role for interleukin-1beta. Neuroscience. 2008;156(1):30–41.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

Conflicts of interest: C.J. Barnum: none; M.G. Tansey: has been a consultant for Angiochem Inc., Karyopharm Inc.; was employed by Xencor Inc. (ex-employee [2001–2002]); has patents (planned, pending or issued) with Xencor Inc.; has stock/stock options with Xencor Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malú G. Tansey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnum, C.J., Tansey, M.G. Neuroinflammation and Non-motor Symptoms: The Dark Passenger of Parkinson’s Disease?. Curr Neurol Neurosci Rep 12, 350–358 (2012). https://doi.org/10.1007/s11910-012-0283-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-012-0283-6

Keywords

Navigation