Skip to main content
Log in

Biofeedback and Epilepsy

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Biofeedback is a noninvasive behavioral treatment that enables a patient to gain volitional control over a physiological process. As a treatment for epilepsy, biofeedback interventions were explored from as early as the 1970s, concentrating on sensory motor rhythm (SMR) as a neurophysiologic parameter. Whereas SMR biofeedback aims to modulate frequency components of the electroencephalography (EEG), slow cortical potential (SCP) biofeedback (which was introduced in the 1990s) focuses on the regulation of the amplitude of cortical potential changes (DC shift). In its application to epilepsy, biofeedback using galvanic skin response (GSR), an electrodermal measure of sympathetic activity, is a relatively new cost-effective methodology. The present article first reviews biofeedback using SMR and SCP, for which efficacy and neural mechanisms are relatively well characterized. Then recent data regarding promising applications of GSR biofeedback will be introduced and discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Sterman MB, Wyrwicka W, Roth S. Electrophysiological correlates and neural substrates of alimentary behavior in the cat. Ann NY Acad Sci. 1969;157:723–39.

    Article  PubMed  CAS  Google Scholar 

  2. Sterman MB. Basic concepts and clinical findings in the treatment of seizure disorders with EEG operant conditioning. Clin Electroencephalogr. 2000;31:45–55.

    PubMed  CAS  Google Scholar 

  3. Tan G, Thornby J, Hammond DC, et al. Meta-analysis of EEG biofeedback in treating epilepsy. Clin EEG Neurosci. 2009;40:173–9.

    PubMed  Google Scholar 

  4. Sterman MB, Friar L. Suppression of seizures in an epileptic following sensorimotor EEG feedback training. Electroencepalogr Clin Neurophysiol. 1972;33:89–95.

    Article  CAS  Google Scholar 

  5. Sterman MB, Macdonald LR, Stone RK. Biofeedback training of the sensorimotor electroencephalogram rhythm in man: Effects on epilepsy. Epilepsia. 1974;15:395–416.

    Article  PubMed  CAS  Google Scholar 

  6. Sterman B, Macdonald LR. Effect of central cortical EEG feedback training on incidence of poorly controlled Seizures. Epilepsia. 1978;19:207–22.

    Article  PubMed  CAS  Google Scholar 

  7. Finley WW, Smith HA, Etherton MD. Reduction of seizures and normalization of the EEG in severe epileptic following sensorimotor biofeedback training: Preliminary study. Biol Psychol. 1975;2:189–203.

    Article  PubMed  CAS  Google Scholar 

  8. Seifert AR, Lubar JF. Reduction of epileptic seizures through EEG biofeedback training. Biol Psychol. 1975;3:157–84.

    Article  PubMed  CAS  Google Scholar 

  9. Kaplan BJ. Biofeedback in epileptics: Equivocal relationship of reinforced EEG frequency to seizure reduction. Epilepsia. 1975;16:477–85.

    Article  PubMed  CAS  Google Scholar 

  10. Lubar JF, Bahler WW. Behavioural management of epileptic seizures following EEG biofeedback training of the sensory motor rhythm. Biofeedback Self Regul. 1976;1:77–104.

    Article  PubMed  CAS  Google Scholar 

  11. Cabral RJ, Scott DF. Effects of two desensitization techniques, biofeedback and relaxation, on intractable epilepsy: follow-up study. J Neurol Neurosurg Psychiatry. 1976;39(5):504–7.

    Article  PubMed  CAS  Google Scholar 

  12. Quy RJ, Hutt JS, Forrest S. Sensorymotor rhythm feedback training and epilepsy: some methodological and conceptual issues. Biol Psychol. 1979;9:129–49.

    Article  PubMed  CAS  Google Scholar 

  13. Lubar JF, Shabsin HS, Natelson SE, Holder GS, Whitsett SF, Pamplin WE, et al. EEG operant conditioning in intractable epileptics. Arch Neurol. 1981;38(11):700–4.

    PubMed  CAS  Google Scholar 

  14. Whitsett SF, Lubar JF, Holder GS, Pamplin WE, Shabsin HS. A double-blind investigation of the relationship between seizure activity and the sleep EEG following EEG biofeedback training. Biofeedback Self Regul. 1982;7(2):193–209.

    Article  PubMed  CAS  Google Scholar 

  15. Fried R, Rubin SR, Carlton RM, Fox MC. Behavioral control of intractable idiopathic seizures: I. Self-regulation of end-tidal carbon dioxide. Psychosom Med. 1984;46(4):315–31.

    PubMed  CAS  Google Scholar 

  16. Helmstaedter C, Riedel R, Stefan H. Treatment of drug-resistant focal epilepsy using visual orientation activity, EEG- EMG-Z-Elektroenzephalogr-VErwandte-Geb 1992; 92–95

  17. Tozzo CA, Elfner LF, May JG. EEG biofeedback and relaxation training in the control of epileptic seizures. Int J Psychophysiol. 1988;6(3):185–94.

    Article  PubMed  CAS  Google Scholar 

  18. Andrews DJ, Schonfeld WH. Predictive factors for controlling seizures using a behavioural approach. Seizure. 1992;1:111–6.

    Article  PubMed  CAS  Google Scholar 

  19. Rockstroh B, Elbert T, Birbaumer N, Wolf P, Düchting-Röth A, Reker M, et al. Cortical self-regulation in patients with epilepsies. Epilepsy Res. 1993;14(1):63–72.

    Article  PubMed  CAS  Google Scholar 

  20. Swingle PG. Neurofeedback treatment of pseudoseizure disorder. Biol Psychiatry. 1998;44(11):1196–9.

    Article  PubMed  CAS  Google Scholar 

  21. Holzapfel S, Strehl U, Kotchoubey B, Birbaumer N. Behavioral psychophysiological intervention in a mentally retarded epileptic patient with brain lesion. Appl Psychophysiol Biofeedback. 1998;23(3):189–202.

    Article  PubMed  CAS  Google Scholar 

  22. Kotchoubey B, Streho U, Blankenhorn V, Frescher W, Birbaumer N. Negative potential shifts and the prediction of the outcome of neurofeedback therapy in epilepsy. Clin Neurophysiol. 1999;110:683–6.

    Article  PubMed  CAS  Google Scholar 

  23. Kotchoubey B, Blankenhorn V, Frosher W, Streho U, Birbaumer N. Stability of cortical self regulation in epilepsy patients. Neuroreport. 1997;8:1867–70.

    Article  PubMed  CAS  Google Scholar 

  24. Kotchoubey B, Schneider D, Schleichert H, Strehl U, Uhlmann C, Blankenhorn V, et al. Self regulation of slow cortical potentials in epilepsy: a retrial with analysis of influencing factors. Epilepsy Res. 1996;25:269–76.

    Article  PubMed  CAS  Google Scholar 

  25. Kotchoubey B, Strehl U, Uhlmann C, et al. Modification of slow cortical potentials in patients with refractory epilepsy: acontrolled outcome study. Epilepsia. 2001;42:406–16.

    Article  PubMed  CAS  Google Scholar 

  26. Nagai Y, Goldstein LH, Fenwick PB, et al. Clinical efficacy of galvanic skin response biofeedback training in reducing seizures in adult epilepsy: a preliminary randomized controlled study. Epilepsy Behav. 2004;5:216–23.

    Article  PubMed  Google Scholar 

  27. Walker JE, Kozlowski GP. Neurofeedback treatment of epilepsy. Child Adolesc Psychiatr Clin N Am. 2005;14:163–76.

    Article  PubMed  Google Scholar 

  28. • Sterman MB, Egner T. Foundation and practice of neurofeedback for the treatment of epilepsy. Appl Psychophysiol Biofeedback 2008; 31:21–35. This article summarizes an overview of SMR biofeedback as an application of treatment for epilepsy. The review refers to background rationales, basic and clinical research including neural mechanisms and clinical practice of SMR biofeedback.

    Article  Google Scholar 

  29. Howe RC, Sterman MB. Cortical-subcortical EEG correlates of suppressed motor behavior during sleep and waking in the cat. Electroencephalogr Clin Neurophysiol. 1972;32:681–95.

    Article  PubMed  CAS  Google Scholar 

  30. Lévesque J, Beauregard M, Mensour B. Effect of neurofeedback training on the neural substrates of selective attention in children with attention-deficit/hyperactivity disorder: a functional magnetic resonance imaging study. Neurosci Lett. 2006;394:216–21.

    Article  PubMed  Google Scholar 

  31. Birbaumer N. Effects of hyperventilation on EEG frequency and slow cortical potentials in relation to an anticonvulsant and epilepsy. J Psychophysiol. 1989;3:147–54.

    Google Scholar 

  32. Chatrian GE, Somasundaram M, Tassinari CA. DC changes recorded transcranially during “typical” three per second spike and wave discharges in man. Epilepsia. 1968;9:185–209.

    Article  PubMed  CAS  Google Scholar 

  33. Casper H, Speckman EJ. Cerebral pO2m pCO2 and pH : Changes during convulsive activity and their significant for spontaneous arrest of seizures. Epilepsia 1972; 699–725.

  34. Speckmann EJ, Walden J. Anti-epileptic effects of organic calcium channel blockers in animal experiments. In: Schwartzkroin P, editor. Epielpsy: Models mechanisms and concepts. Cambridge University press; 1993; p. 462–486.

  35. Kotchoubey B, Schneider D, Schleichert H, et al. Self-regulation of slow cortical potentials in epilepsy: a retrial with analysis of influencing factors. Epilepsy Res. 1996;25:269–76.

    Article  PubMed  CAS  Google Scholar 

  36. Strehl U, Kotchoubey B, Trevorrow T, et al. Predictors of seizure reduction after self-regulation of slow cortical potentials as a treatment of drug-resistant epilepsy. Epilepsy Behav. 2005;6:156–66.

    Article  PubMed  Google Scholar 

  37. • Strehl U, Trevorrow T, Veit R et al. Deactivation of brain areas during self-regulation of slow cortical potentials in seizure patients. Appl Psychophysiol Biofeedback 2006; 31:85–94. This is one recent article on SCP biofeedback on epilepsy. The study explores neural mechanisms of effect of SCP biofeedback in reducing seizures using fMRI.

    Article  PubMed  Google Scholar 

  38. Hinterberger T, Veit R, Strehl U, et al. Brain areas activated in fMRI during self-regulation of slow cortical potentials (SCPs). Exp Brain Res. 2003;152:113–22.

    Article  PubMed  Google Scholar 

  39. Venables PH, Christie MJ. Electrodermal activity. In: Martin I, Venables PH, editors. Techniques in Psychophysiology. John Willey & Sons Ltd; 1980. p. 3–67.

  40. Nagai Y, Goldstein LH, Critchley HD, et al. Influence of sympathetic autonomic arousal on contingent negative variation: implications for a therapeutic behavioural intervention in epilepsy. Epilepsy Res. 2004;58:185–93.

    Article  PubMed  Google Scholar 

  41. Nagai Y, Critchley HD, Featherstone E, et al. Brain activity relating to the Contingent Negative Variation (CNV): fMRI investigation. Neuroimage. 2004;21:1232–41.

    Article  PubMed  CAS  Google Scholar 

  42. Critchley HD, Elliot R, Mathias CJ, et al. Neural activity relating to the generation and representation of galvanic skin conductance response: a functional magnetic imaging study. J Neurosci. 2000;20:3033–40.

    PubMed  CAS  Google Scholar 

  43. Critchley HD, Melmed RN, Featherstone E, et al. Brain activity during biofeedback relaxation: a functional neuroimaging investigation. Brain. 2001;124:1003–12.

    Article  PubMed  CAS  Google Scholar 

  44. • Nagai Y, Critchley HD, Rothwell JC et al. Changes in cortical potential associated with modulation of peripheral sympathetic activity in patients with epilepsy. Psychosom Med. 2009; 71:84–92. This article introduces a theoretical background of an effect of GSR biofeedback on epilepsy. The study investigated the effect of peripheral GSR biofeedback training on central cortical activity changes using EEG in patients with epilepsy. Proposed neural mechanisms are discussed.

    Article  PubMed  Google Scholar 

  45. Nagai Y, Critchley HD, Featherstone E, et al. Brain activity relating to the Contingent Negative Variation (CNV): fMRI investigation. Neuroimage. 2004;21:1232–41.

    Article  PubMed  CAS  Google Scholar 

  46. Raichle ME, MacLeod AM, Snyder AX, et al. A default mode of brain function. Proc Natl Acad Sci USA. 2001;16:676–82.

    Article  Google Scholar 

  47. Cavanna AE, Monaco F. Brain mechanisms of altered conscious states during epileptic seizures. Nat Rev Neurol. 2009;5:267–76.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

Y. Nagai’s work was supported by the Bial Foundation, the Raymond Way Fund, and Ultrasis Plc.

Disclosure

Ultrasis Plc owns a patent arising from their support of Y. Nagai’s work, from which Y. Nagai may potentially benefit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoko Nagai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagai, Y. Biofeedback and Epilepsy. Curr Neurol Neurosci Rep 11, 443–450 (2011). https://doi.org/10.1007/s11910-011-0201-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-011-0201-3

Keywords

Navigation