Skip to main content

Advertisement

Log in

Reservoirs for HIV-1

  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

The success of antiretroviral therapy for HIV-1 infection has generated interest in mechanisms by which the virus can persist in the body despite the presence of drugs that effectively inhibit key steps in the virus life cycle. There are several potential cellular and anatomic reservoirs for HIV-1. Among the most worrisome is a reservoir consisting of latently infected resting CD4+ T cells. Recent studies suggest that these cells can potentially provide a mechanism for life-long persistence of replication-competent forms of HIV-1, rendering unrealistic hopes of virus eradication with current antiretroviral regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Palella FJ, Delaney KM, Moorman AC, et al.: Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. N Engl J Med 1998, 338:853–860. Important paper documenting the clinical benefits of combination therapy with protease inhibitors.

    Article  PubMed  Google Scholar 

  2. Perelson AS, Essunger P, Cao Y, et al.: Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 1997, 387:188–191. In this paper, the authors use a quantitative analysis of the decay of plasma virus after initiation of combination therapy to make predictions about the treatment times needed for eradication. This study predated the demonstration that latently infected cells persist with minimal decay, and therefore this study is overly optimistic.

    Article  PubMed  CAS  Google Scholar 

  3. Garcia-Blanco MA, Cullen BR: Molecular basis of latency in pathogenic human viruses. Science 1991, 254:815–820.

    Article  PubMed  CAS  Google Scholar 

  4. Stevenson M: Molecular mechanisms for the regulation of HIV replication, persistence and latency. AIDS 1997, 11(suppl A):S25-S33.

    PubMed  Google Scholar 

  5. Schrager LK, D’Souza PM: Cellular and anatomical reservoirs of HIV-1 in patients receiving potent antiretroviral combination therapy. JAMA 1998, 280:67–71.

    Article  PubMed  CAS  Google Scholar 

  6. Finzi D, Siliciano RF: Viral dynamics in HIV-1 infection. Cell 1998, 93:665–671.

    Article  PubMed  CAS  Google Scholar 

  7. Wei X, Ghosh SK, Taylor ME, et al.: Viral dynamics in human immunodeficiency virus type 1 infection. Nature 1995, 373:117–122.

    Article  PubMed  CAS  Google Scholar 

  8. Ho DD, Neumann AU, Perelson AS, et al.: Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 1995, 373:123–126.

    Article  PubMed  CAS  Google Scholar 

  9. Zhang LQ, Dailey PJ, He T, et al.: Rapid clearance of simian immunodeficiency virus particles from plasma of rhesus macaques. J Virol 1999, 73:855–860.

    PubMed  CAS  Google Scholar 

  10. Perelson AS, Neumann AU, Markowitz M, et al.: HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, viral generation time. Science 1996, 271:1582–1586.

    Article  PubMed  CAS  Google Scholar 

  11. Cavert W, Notermans DW, Staskus K, et al.: Kinetics of response in lymphoid tissue to antiretroviral therapy of HIV-1 infection. Science 1997, 276:960–964.

    Article  PubMed  CAS  Google Scholar 

  12. Ho DD, Rota TR, Hirsh MS: Infection of monocyte/macrophages by human T lymphotropic virus type III. J Clin Invest 1986, 77:1712–1720.

    PubMed  CAS  Google Scholar 

  13. Nicolson JKA, Gross GD, Callaway CS, et al.: In vitro infection of human monocytes with T lymphotrophic virus type III/ lymphadenopathy-associated virus (HTLV-III/LAV). J Immunol 1986, 137:323–329.

    Google Scholar 

  14. Zhang Z-Q, Schuler T, Wietgrefe S, et al.: Sexual transmission and propagation of SIV and HIV-1 in activated and quiescent T cells [abstract 4]. In 6th Conference on Retroviruses and Opportunistic Infections. Chicago, 1999.

  15. Yasutomi Y, Reimann KA, Lord CI, et al.: Simian immunodeficiency virus-specific CD8+ lymphocyte response in acutely infected rhesus monkeys. J Virol 1993, 67:1707–1711.

    PubMed  CAS  Google Scholar 

  16. Embretson J, Zupancic M, Ribas JL, et al.: Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS. Nature 1993, 362:359–362.

    Article  PubMed  CAS  Google Scholar 

  17. Burton GF, Masuda A, Heath SL, et al.: Follicular dendritic cells (FDC) in retroviral infection: host/pathogen perspectives. Immunol Rev 1997, 156:185–197.

    Article  PubMed  CAS  Google Scholar 

  18. Grouard G, Clark EA: Role of dendritic and follicular dendritic cells in HIV infection and pathogenesis. Curr Opin Immunol 1997, 9:563–567.

    Article  PubMed  CAS  Google Scholar 

  19. Heath SL, Tew JG, Szakal AK, et al.: Follicular dendritic cells and human immunodeficiency virus infectivity. Nature 1995, 377:7440–744.

    Article  Google Scholar 

  20. Van Furth R: Origin and turnover of monocytes and macrophages. Curr Top Pathol 1989, 79:125–150.

    PubMed  CAS  Google Scholar 

  21. Sierra-Madero JC, Toossi Z, Hom DL, et al.: Relationship between load of virus in alveolar macrophages from human immunodeficiency virus type 1-infected persons, production of cytokines, and clinical status. J Infect Dis 1994, 169:18–27.

    PubMed  CAS  Google Scholar 

  22. McIlroy D, Autran B, Cheynier R, et al.: Low infection frequency of macrophages in the spleens of HIV+ patients. Res Virol 1996, 147:115–121.

    Article  PubMed  CAS  Google Scholar 

  23. Chun T-W, Carruth L, Finzi D, et al.: Quantitation of latent tissue reservoirs and total body load in HIV-1 infection. Nature 1997, 387:183–188. A quantitative analysis of the presence of resting CD4+ T cells with integrated HIV-1 DNA in the blood and lymph nodes of infected individuals.

    Article  PubMed  CAS  Google Scholar 

  24. Orenstein JM, Fox C, Wahl SM: Macrophages as a source of HIV during opportunistic infections. Science 1997, 276:1857–1861.

    Article  PubMed  CAS  Google Scholar 

  25. Smith PD, Meng G, Shaw GM, et al.: Infection of gastrointestinal tract macrophages by HIV-1. J Leukocyte Biol 1997, 62:72–77.

    PubMed  CAS  Google Scholar 

  26. Zhang H, Dornadula G, Beumont M, et al.: HIV-1 in the semen of men receiving highly active anti-retroviral therapy. N Engl J Med 1998, 339:1803–1808.

    Article  PubMed  CAS  Google Scholar 

  27. Glass JD, Johnson RT: Human immunodeficiency virus and the brain. Ann Rev Neurosci 1996, 19:1–26.

    Article  PubMed  CAS  Google Scholar 

  28. McArthur JC, McClernon DR, Cronin MF, et al.: Relationship between human immunodeficiency virus-associated dementia and viral load in the cerebrospinal fluid and brain. Ann Neurol 1997, 42:689–698.

    Article  PubMed  CAS  Google Scholar 

  29. Zink MC, Spelman JP, Robinson RB, et al.: SIV infection of macaques--modeling the progression to AIDS dementia. J Neurovirol 1998, 4:249–259.

    PubMed  CAS  Google Scholar 

  30. Chun T-W, Finzi D, Margolick J, et al.: Fate of HIV-1-infected T cells in vivo: Rates of transition to stable latency. Nat Med 1995, 1:1284–1290.

    Article  PubMed  CAS  Google Scholar 

  31. Folks TM, Clouse KA, Justement J, et al.: Tumor necrosis factor alpha induces expression of human immunodeficiency virus in a chronically infected T-cell clone. Proc Natl Acad Sci U S A 1989, 86:2365–2368.

    Article  PubMed  CAS  Google Scholar 

  32. Pomerantz RJ, Trono D, Feinberg MB, et al.: Cells nonproductively infected with HIV-1 exhibit an aberrant pattern of viral RNA expression: a molecular model for latency. Cell 1990, 61:1271–1276.

    Article  PubMed  CAS  Google Scholar 

  33. Pomerantz RJ, Seshamma T, Trono D: Efficient replication of human immunodeficiency virus type 1 requires a threshold level of Rev: potential implications for latency. J Virol 1992, 66:1809–1813.

    PubMed  CAS  Google Scholar 

  34. Seshamma T, Bagasra O, Trono D, et al.: Blocked early-stage latency in the peripheral blood cells of certain individuals infected with human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 1992, 89:10663–10667.

    Article  PubMed  CAS  Google Scholar 

  35. Duh EJ, Maury WJ, Folks TM, et al.: Tumor necrosis factor alpha activates human immunodeficiency virus type 1 through induction of nuclear factor binding to the NF-kappa B sites in the long terminal repeat. Proc Natl Acad Sci U S A 1989, 86:5974–5978.

    Article  PubMed  CAS  Google Scholar 

  36. Nabel G, Baltimore D: An inducible transcription factor activates expression of human immunodeficiency virus in T-cells. Nature 1987, 326:711–713.

    Article  PubMed  CAS  Google Scholar 

  37. Siekevitz M, Josephs SF, Dukovich M, et al.: Activation of the HIV-1 LTR by T cell mitogens and the trans-activator protein of HTLV-I. Science 1987, 238:1575–1578.

    Article  PubMed  CAS  Google Scholar 

  38. Tong-Starksen SE, Luciw PA, Peterlin BM: Human immunodeficiency virus long terminal repeat responds to T-cell activation signals. Proc Natl Acad Sci U S A 1987, 84:6845–6849.

    Article  PubMed  CAS  Google Scholar 

  39. Bohnlein E, Lowenthal JW, Siekevitz M, et al.: The same inducible nuclear proteins regulates mitogen activation of both the interleukin-2 receptor-alpha gene and type 1 HIV. Cell 1988, 53:827–836.

    Article  PubMed  CAS  Google Scholar 

  40. Greene WC: Regulation of HIV-1 gene expression.. Ann Rev Immunol 1990, 8:453–475.

    Article  CAS  Google Scholar 

  41. Wei P, Garber ME, Fang SM, et al.: A novel CDK9-associated Ctype cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 1998, 92:451–462.

    Article  PubMed  CAS  Google Scholar 

  42. Herrmann CH, Carroll RG, Wei P, et al.: Tat-associated kinase, TAK, activity is regulated by distinct mechanisms in peripheral blood lymphocytes and promonocytic cell lines. J Virol 1998, 72:9881–9888.

    PubMed  CAS  Google Scholar 

  43. Adams M, Sharmeen L, Kimpton J, et al.: Cellular latency in human immunodeficiency virus-infected individuals with high CD4 levels can be detected by the presence of promoter-proximal transcripts. Proc Natl Acad Sci U S A 1994, 91:3862–3866.

    Article  PubMed  CAS  Google Scholar 

  44. Kim SY, Byrn R, Groopman J, et al.: Temporal aspects of DNA and RNA synthesis during human immunodeficiency virus infection: evidence for differential gene expression. J Virol 1989, 63:3708–3713.

    PubMed  CAS  Google Scholar 

  45. Felber BK, Drysdale CM, Pavlakis GN: Feedback regulation of human immunodeficiency virus type 1 expression by the Rev protein. J Virol 1990, 64:3734–3741.

    PubMed  CAS  Google Scholar 

  46. Finzi D, Hermankova M, Pierson T, et al.: Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 1997, 278:1295–1300. One of three papers establishing the persistence of HIV-1 in resting CD4+ T cells of patients on combination therapy.

    Article  PubMed  CAS  Google Scholar 

  47. Wong JK, Hezareh M, Gunthard HF, et al.: Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 1997, 278:1291–1295. Another paper establishing the persistence of HIV-1 in resting CD4+ T cells of patients on combination therapy.

    Article  PubMed  CAS  Google Scholar 

  48. Chun TW, Stuyver L, Mizell SB, et al.: Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc Natl Acad Sci U S A 1997, 94:13193–13197. This study also established the persistence of HIV-1 in resting CD4+ T cells of patients on combination therapy.

    Article  PubMed  CAS  Google Scholar 

  49. Finzi D, Blankson J, Siliciano JD, et al.:Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med 1999, 5:512–517.

    Article  PubMed  CAS  Google Scholar 

  50. Flexner C: HIV-1 protease inhibitors. N Engl J Med 1998, 338:1281–1292.

    Article  PubMed  CAS  Google Scholar 

  51. Chun T-W, Engel D, Berrey MM, et al.: Early establishment of a pool of latently infected, resting CD4+ T cells during primary HIV-1 infection. Proc Natl Acad Sci U S A 1998, 95:8869–8873.

    Article  PubMed  CAS  Google Scholar 

  52. Zhang L, Ramratnam B, Tenner-Racz K, et al.: Qualifying residual HIV-1 replication in patients receiving combination antiretroviral therapy. N Engl J Med 1999, 340:1605–1613.

    Article  PubMed  CAS  Google Scholar 

  53. Mclean AR, Michie CA: In vivo estimates of division and death rates of human T lymphocytes. Proc Natl Acad Sci U S A 1995, 92:3707–3711.

    Article  PubMed  CAS  Google Scholar 

  54. Reijers MH, Weverling GJ, Jurriaans S, et al.: Maintenance therapy after quadruple induction therapy in HIV-1 infected individuals: Amsterdam Duration of Antiretroviral Medication (ADAM) study. Lancet 1998, 352:185–190.

    Article  PubMed  CAS  Google Scholar 

  55. Havlir DV, Marscher IC, Hirsch MS, et al.: Maintenance antiretroviral therapies in HIV-infected subjects with undetectable plasma HIV RNA after triple drug therapy. N Engl J Med 1998, 339:1261–1268.

    Article  PubMed  CAS  Google Scholar 

  56. Pialoux G, Raffi F, Brun-Vezinet R, et al.: Trilege study team: a randomized trial of three maintenance regimens given after three months of induction therapy with zidovudine, lamivudine, and indinavir in previously treated patients. N Engl J Med 1998, 338:1269–1276.

    Article  Google Scholar 

  57. Natarajan V, Bosche M, Metcalf JA, et al.: HIV-1 replication in patients with undetectable plasma virus receiving HAART. Highly active antiretroviral therapy. Lancet 1999, 353:119–120.

    Article  PubMed  CAS  Google Scholar 

  58. Wong JK, Hezareh M, Gunthard HF, et al.: Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 1997, 278:1291–1295.

    Article  PubMed  CAS  Google Scholar 

  59. Kovacs JA, Baseler M, Dewar RJ, et al.: Increases in CD4 T lymphocytes with intermittent courses of interleukin-2 in patients with human immunodeficiency virus infection. N Engl J Med 1995, 332:567–575.

    Article  PubMed  CAS  Google Scholar 

  60. Jacobson EL, Pilar F, Smith KA: Rational interleukin 2 therapy for HIV positive individuals: Daily low doses enhace immune fuction without toxicity. Proc Natl Acad Sci U S A 1996, 93:10405–10410.

    Article  PubMed  CAS  Google Scholar 

  61. Kovacs JA, Vogel S, Albert JM, et al.: Controlled trial of interleukin-2 infusions in patients infected with the human immunodeficiency virus. N Engl J Med 1996, 335:1350–1356.

    Article  PubMed  CAS  Google Scholar 

  62. Davey RT, Jr, Chaitt DG, Piscitelli SC, et al.: Subcutaneous administration of interleukin-2 in human immunodeficiency virus type 1-infected persons. J Infect Dis 1997, 175:781–789.

    Article  PubMed  CAS  Google Scholar 

  63. Chun T-W, Engel D, Mizell S, et al.: Effect of interleukin-2 in diminution of a pool of latently infected, resting CD4+ T cells in HIV-1 infected patients receiving highly active antiretroviral therapy. 6th Confernce on Retroviruses and Opportunistic Infections. Chicago, 1999.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siliciano, R.F. Reservoirs for HIV-1. Curr Infect Dis Rep 1, 298–304 (1999). https://doi.org/10.1007/s11908-999-0033-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11908-999-0033-3

Keywords

Navigation