Skip to main content

Advertisement

Log in

Alterations in Cardiac Structure and Function in Hypertension

  • Hypertension and the Heart (SD Solomon and O Vardeny, Section Editors)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Hypertension is a powerful risk factor for cardiovascular mortality and morbidity, including heart failure with both preserved and reduced ejection fraction. Hypertensive heart disease (HHD) defines the complex and diverse perturbations of cardiac structure and function occurring secondary to hypertension. Left ventricular hypertrophy (LVH) is one of the most recognized features of HHD and is an established risk factor for adverse cardiovascular (CV) outcomes in hypertension. Beyond LVH, LV geometry provides additional information regarding the cardiac response to hypertension. Imaging studies from larger cohorts of hypertensive patients reveal wide variability in the prevalence of LVH and LV geometric patterns, with the prevalence of concentric LVH similar to that of eccentric LVH. Hypertension is also associated with concomitant impairments in LV diastolic and systolic function. It remains uncertain why patients develop different patterns of LVH, although demographics and clinical comorbidities appear to influence that response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lawes CM, Vander Hoorn S, Rodgers A. Global burden of blood-pressure-related disease, 2001. Lancet. 2008;371:1513–8.

    PubMed  Google Scholar 

  2. Ho JE, Lyass A, Lee DS, Vasan RS, Kannel WB, Larson MG, et al. Predictors of new-onset heart failure: Differences in preserved versus reduced ejection fraction. Circ Heart Fail. 2013;6:279–86.

    PubMed Central  PubMed  Google Scholar 

  3. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics–2013 update: A report from the american heart association. Circulation. 2013;127:e6–245.

    PubMed  Google Scholar 

  4. Beckett NS, Peters R, Fletcher AE, Staessen JA, Liu L, Dumitrascu D, et al. Treatment of hypertension in patients 80 years of age or older. N Engl J Med. 2008;358:1887–98.

    CAS  PubMed  Google Scholar 

  5. Briasoulis A, Agarwal V, Tousoulis D, Stefanadis C. Effects of antihypertensive treatment in patients over 65 years of age: A meta-analysis of randomised controlled studies. Heart. 2014;100:317–23.

    Google Scholar 

  6. Georgiopoulou VV, Kalogeropoulos AP, Raggi P, Butler J. Prevention, diagnosis, and treatment of hypertensive heart disease. Cardiol Clin. 2010;28:675–91.

    PubMed  Google Scholar 

  7. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, et al. 2013 esh/esc guidelines for the management of arterial hypertension: The task force for the management of arterial hypertension of the european society of hypertension (esh) and of the european society of cardiology (esc). Eur Heart J. 2013;34:2159–219.

    PubMed  Google Scholar 

  8. Cacciapuoti F. Molecular mechanisms of left ventricular hypertrophy (lvh) in systemic hypertension (sh)-possible therapeutic perspectives. J Am Soc Hypertens. 2011;5:449–55.

    CAS  PubMed  Google Scholar 

  9. Frohlich ED, Apstein C, Chobanian AV, Devereux RB, Dustan HP, Dzau V, et al. The heart in hypertension. N Engl J Med. 1992;327:998–1008.

    CAS  PubMed  Google Scholar 

  10. Gosse P, Cremer A, Vircoulon M, Coulon P, Jan E, Papaioannou G, et al. Prognostic value of the extent of left ventricular hypertrophy and its evolution in the hypertensive patient. J Hypertens. 2012;30:2403–9.

    CAS  PubMed  Google Scholar 

  11. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the framingham heart study. N Engl J Med. 1990;322:1561–6.

    CAS  PubMed  Google Scholar 

  12. Schillaci G, Verdecchia P, Porcellati C, Cuccurullo O, Cosco C, Perticone F. Continuous relation between left ventricular mass and cardiovascular risk in essential hypertension. Hypertension. 2000;35:580–6.

    CAS  PubMed  Google Scholar 

  13. Linzbach AJ. Heart failure from the point of view of quantitative anatomy. Am J Cardiol. 1960;5:370–82.

    CAS  PubMed  Google Scholar 

  14. Devereux RB, Roman MJ. Left ventricular hypertrophy in hypertension: Stimuli, patterns, and consequences. Hypertens Res. 1999;22:1–9.

    CAS  PubMed  Google Scholar 

  15. Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med. 1991;114:345–52.

    CAS  PubMed  Google Scholar 

  16. Ganau A, Devereux RB, Roman MJ, de Simone G, Pickering TG, Saba PS, et al. Patterns of left ventricular hypertrophy and geometric remodeling in essential hypertension. J Am Coll Cardiol. 1992;19:1550–8.

    CAS  PubMed  Google Scholar 

  17. Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest. 1975;56:56–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Frey N, Olson EN. Cardiac hypertrophy: The good, the bad, and the ugly. Annu Rev Physiol. 2003;65:45–79.

    CAS  PubMed  Google Scholar 

  19. Drazner MH. The progression of hypertensive heart disease. Circulation. 2011;123:327–34. A review of the major pathophysiologic mechanisms underlying hypertensive heart disease and an informative discussion of the diverse pathways that it can take in the progression to heart failure.

    PubMed  Google Scholar 

  20. Iwashima Y, Horio T, Kamide K, Tokudome T, Yoshihara F, Nakamura S, et al. Additive interaction of metabolic syndrome and chronic kidney disease on cardiac hypertrophy, and risk of cardiovascular disease in hypertension. Am J Hypertens. 2010;23:290–8.

    PubMed  Google Scholar 

  21. Mancia G, Carugo S, Grassi G, Lanzarotti A, Schiavina R, Cesana G, et al. Prevalence of left ventricular hypertrophy in hypertensive patients without and with blood pressure control: Data from the pamela population. Pressioni arteriose monitorate e loro associazioni. Hypertension. 2002;39:744–9.

    CAS  PubMed  Google Scholar 

  22. Cuspidi C, Sala C, Negri F, Mancia G, Morganti A. Prevalence of left-ventricular hypertrophy in hypertension: An updated review of echocardiographic studies. J Hum Hypertens. 2012;26:343–9.

    CAS  PubMed  Google Scholar 

  23. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification: A report from the american society of echocardiography's guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the european association of echocardiography, a branch of the european society of cardiology. J Am Soc Echocardiogr. 2005;18:1440–63.

    PubMed  Google Scholar 

  24. Armstrong AC, Gidding S, Gjesdal O, Wu C, Bluemke DA, Lima JA. Lv mass assessed by echocardiography and cmr, cardiovascular outcomes, and medical practice. JACC Cardiovasc Imaging. 2012;5:837–48.

    PubMed Central  PubMed  Google Scholar 

  25. Ojji DB, Opie LH, Lecour S, Lacerda L, Adeyemi OM, Sliwa K. The effect of left ventricular remodelling on soluble st2 in a cohort of hypertensive subjects. J Hum Hypertens. 2014. doi:10.1038/jhh.2013.130.

  26. Sinning C, Keller T, Zeller T, Ojeda F, Schluter M, Schnabel R, Lubos E, Bickel C, Lackner KJ, Diemert P, Munzel T, Blankenberg S, Wild PS. Association of high-sensitivity assayed troponin i with cardiovascular phenotypes in the general population: The population-based gutenberg health study. Clin Res Cardiol. 2014;103:211–22.

    Google Scholar 

  27. Rienstra M, Yin X, Larson MG, Fontes JD, Magnani JW, McManus DD, et al. Relation between soluble st2, growth differentiation factor-15, and high-sensitivity troponin i and incident atrial fibrillation. Am Heart J. 2014;167:109–115.e2.

    Google Scholar 

  28. de Simone G, Gottdiener JS, Chinali M, Maurer MS. Left ventricular mass predicts heart failure not related to previous myocardial infarction: The cardiovascular health study. Eur Heart J. 2008;29:741–7.

    PubMed  Google Scholar 

  29. Cuspidi C, Ambrosioni E, Mancia G, Pessina AC, Trimarco B, Zanchetti A. Role of echocardiography and carotid ultrasonography in stratifying risk in patients with essential hypertension: The assessment of prognostic risk observational survey. J Hypertens. 2002;20:1307–14.

    CAS  PubMed  Google Scholar 

  30. Andrikou E, Tsioufis C, Thomopoulos C, Andrikou I, Kasiakogias A, Leontsinis I, et al. Left ventricular mass index as a predictor of new-onset microalbuminuria in hypertensive subjects: A prospective study. Am J Hypertens. 2012;25:1195–201.

    CAS  PubMed  Google Scholar 

  31. Frohlich ED, Gonzalez A, Diez J. Hypertensive left ventricular hypertrophy risk: Beyond adaptive cardiomyocytic hypertrophy. J Hypertens. 2011;29:17–26. A comprehensive review of the pathophysiological mechanisms underlying hypertensive heart disease.

    CAS  PubMed  Google Scholar 

  32. Eguchi K, Kario K, Hoshide S, Ishikawa J, Morinari M, Shimada K. Type 2 diabetes is associated with left ventricular concentric remodeling in hypertensive patients. Am J Hypertens. 2005;18:23–9.

    PubMed  Google Scholar 

  33. Conrady AO, Rudomanov OG, Zaharov DV, Krutikov AN, Vahrameeva NV, Yakovleva OI, et al. Prevalence and determinants of left ventricular hypertrophy and remodelling patterns in hypertensive patients: The st. Petersburg study. Blood Press. 2004;13:101–9.

    CAS  PubMed  Google Scholar 

  34. Adebayo RA, Bamikole OJ, Balogun MO, Akintomide AO, Adeyeye VO, Bisiriyu LA, et al. Echocardiographic assessment of left ventricular geometric patterns in hypertensive patients in nigeria. Clin Med Insights Cardiol. 2013;7:161–7.

    PubMed Central  PubMed  Google Scholar 

  35. Devereux RB, de Simone G, Ganau A, Roman MJ. Left ventricular hypertrophy and geometric remodeling in hypertension: Stimuli, functional consequences and prognostic implications. J Hypertens Suppl. 1994;12:S117–27.

    CAS  PubMed  Google Scholar 

  36. Fox ER, Taylor J, Taylor H, Han H, Samdarshi T, Arnett D, et al. Left ventricular geometric patterns in the jackson cohort of the atherosclerotic risk in communities (aric) study: Clinical correlates and influences on systolic and diastolic dysfunction. Am Heart J. 2007;153:238–44.

    PubMed  Google Scholar 

  37. Akintunde A, Akinwusi O, Opadijo G. Left ventricular hypertrophy, geometric patterns and clinical correlates among treated hypertensive nigerians. Pan Afr Med J. 2010;4:8.

    PubMed  Google Scholar 

  38. Gardin JM, McClelland R, Kitzman D, Lima JA, Bommer W, Klopfenstein HS, et al. M-mode echocardiographic predictors of six- to seven-year incidence of coronary heart disease, stroke, congestive heart failure, and mortality in an elderly cohort (the cardiovascular health study). Am J Cardiol. 2001;87:1051–7.

    CAS  PubMed  Google Scholar 

  39. Drazner MH, Dries DL, Peshock RM, Cooper RS, Klassen C, Kazi F, et al. Left ventricular hypertrophy is more prevalent in blacks than whites in the general population: The dallas heart study. Hypertension. 2005;46:124–9.

    CAS  PubMed  Google Scholar 

  40. Kizer JR, Arnett DK, Bella JN, Paranicas M, Rao DC, Province MA, et al. Differences in left ventricular structure between black and white hypertensive adults: The hypertension genetic epidemiology network study. Hypertension. 2004;43:1182–8.

    CAS  PubMed  Google Scholar 

  41. Krumholz HM, Larson M, Levy D. Sex differences in cardiac adaptation to isolated systolic hypertension. Am J Cardiol. 1993;72:310–3.

    CAS  PubMed  Google Scholar 

  42. Kuch B, Muscholl M, Luchner A, Doring A, Riegger GA, Schunkert H, et al. Gender specific differences in left ventricular adaptation to obesity and hypertension. J Hum Hypertens. 1998;12:685–91.

    CAS  PubMed  Google Scholar 

  43. Vasan RS, Evans JC, Benjamin EJ, Levy D, Larson MG, Sundstrom J, et al. Relations of serum aldosterone to cardiac structure: Gender-related differences in the framingham heart study. Hypertension. 2004;43:957–62.

    CAS  PubMed  Google Scholar 

  44. Saba MM, Ibrahim MM, Rizk HH. Gender and the relationship between resting heart rate and left ventricular geometry. J Hypertens. 2001;19:367–73.

    CAS  PubMed  Google Scholar 

  45. Muscholl MW, Schunkert H, Muders F, Elsner D, Kuch B, Hense HW, et al. Neurohormonal activity and left ventricular geometry in patients with essential arterial hypertension. Am Heart J. 1998;135:58–66.

    CAS  PubMed  Google Scholar 

  46. Teuscher A, Egger M, Herman JB. Diabetes and hypertension. Blood pressure in clinical diabetic patients and a control population. Arch Intern Med. 1989;149:1942–5.

    CAS  PubMed  Google Scholar 

  47. Colosia AD, Palencia R, Khan S. Prevalence of hypertension and obesity in patients with type 2 diabetes mellitus in observational studies: A systematic literature review. Diabetes Metab Syndr Obes. 2013;6:327–38.

    PubMed Central  PubMed  Google Scholar 

  48. Palmieri V, Bella JN, Arnett DK, Liu JE, Oberman A, Schuck MY, et al. Effect of type 2 diabetes mellitus on left ventricular geometry and systolic function in hypertensive subjects: Hypertension genetic epidemiology network (hypergen) study. Circulation. 2001;103:102–7.

    CAS  PubMed  Google Scholar 

  49. Galderisi M, Anderson KM, Wilson PW, Levy D. Echocardiographic evidence for the existence of a distinct diabetic cardiomyopathy (the framingham heart study). Am J Cardiol. 1991;68:85–9.

    CAS  PubMed  Google Scholar 

  50. Devereux RB, Roman MJ, Paranicas M, O'Grady MJ, Lee ET, Welty TK, et al. Impact of diabetes on cardiac structure and function: The strong heart study. Circulation. 2000;101:2271–6.

    CAS  PubMed  Google Scholar 

  51. Buono F, Crispo S, Pagano G, Rengo G, Petitto M, Grieco F, et al. Determinants of left ventricular hypertrophy in patients with recent diagnosis of essential hypertension. J Hypertens. 2014;32:166–73.

    CAS  PubMed  Google Scholar 

  52. Chrostowska M, Szyndler A, Hoffmann M, Narkiewicz K. Impact of obesity on cardiovascular health. Best Pract Res Clin Endocrinol Metab. 2013;27:147–56.

    PubMed  Google Scholar 

  53. de Simone G. Morbid obesity and left ventricular geometry. Hypertension. 2007;49:7–9.

    PubMed  Google Scholar 

  54. Owan T, Avelar E, Morley K, Jiji R, Hall N, Krezowski J, et al. Favorable changes in cardiac geometry and function following gastric bypass surgery: 2-year follow-up in the utah obesity study. J Am Coll Cardiol. 2011;57:732–9. This study provides empiric evidence of the reversibility of cardiac changes associated with obesity.

    PubMed Central  PubMed  Google Scholar 

  55. Luaces M, Cachofeiro V, Garcia-Munoz-Najar A, Medina M, Gonzalez N, Cancer E, et al. Anatomical and functional alterations of the heart in morbid obesity. Changes after bariatric surgery. Rev Esp Cardiol (Engl). 2012;65:14–21.

    Google Scholar 

  56. Cuspidi C, Rescaldani M, Sala C, Grassi G. Left-ventricular hypertrophy and obesity: A systematic review and meta-analysis of echocardiographic studies. J Hypertens. 2014;32:16–25.

    CAS  PubMed  Google Scholar 

  57. Foley RN, Parfrey PS, Harnett JD, Kent GM, Martin CJ, Murray DC, et al. Clinical and echocardiographic disease in patients starting end-stage renal disease therapy. Kidney Int. 1995;47:186–92.

    CAS  PubMed  Google Scholar 

  58. Schiffrin EL, Lipman ML, Mann JF. Chronic kidney disease: Effects on the cardiovascular system. Circulation. 2007;116:85–97.

    PubMed  Google Scholar 

  59. Grabysa R, Wankowicz Z. Echocardiographic markers of left ventricular dysfunction among men with uncontrolled hypertension and stage 3 chronic kidney disease. Med Sci Monit. 2013;19:838–45.

    PubMed Central  PubMed  Google Scholar 

  60. Vakili BA, Okin PM, Devereux RB. Prognostic implications of left ventricular hypertrophy. Am Heart J. 2001;141:334–41.

    CAS  PubMed  Google Scholar 

  61. Foley RN, Curtis BM, Randell EW, Parfrey PS. Left ventricular hypertrophy in new hemodialysis patients without symptomatic cardiac disease. Clin J Am Soc Nephrol. 2010;5:805–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Hashimoto J, Westerhof BE, Westerhof N, Imai Y, O'Rourke MF. Different role of wave reflection magnitude and timing on left ventricular mass reduction during antihypertensive treatment. J Hypertens. 2008;26:1017–24.

    CAS  PubMed  Google Scholar 

  63. Kobayashi S, Yano M, Kohno M, Obayashi M, Hisamatsu Y, Ryoke T, et al. Influence of aortic impedance on the development of pressure-overload left ventricular hypertrophy in rats. Circulation. 1996;94:3362–8.

    CAS  PubMed  Google Scholar 

  64. Lai S, Coppola B, Dimko M, Galani A, Innico G, Frassetti N, et al. Vitamin d deficiency, insulin resistance, and ventricular hypertrophy in the early stages of chronic kidney disease. Ren Fail. 2014;36:58–64.

    CAS  PubMed  Google Scholar 

  65. Martinez-Vea A, Marcas L, Bardaji A, Romeu M, Gutierrez C, Garcia C, et al. Role of oxidative stress in cardiovascular effects of anemia treatment with erythropoietin in predialysis patients with chronic kidney disease. Clin Nephrol. 2012;77:171–81.

    CAS  PubMed  Google Scholar 

  66. Verdecchia P, Schillaci G, Borgioni C, Ciucci A, Battistelli M, Bartoccini C, et al. Adverse prognostic significance of concentric remodeling of the left ventricle in hypertensive patients with normal left ventricular mass. J Am Coll Cardiol. 1995;25:871–8.

    CAS  PubMed  Google Scholar 

  67. Pierdomenico SD, Lapenna D, Bucci A, Manente BM, Cuccurullo F, Mezzetti A. Prognostic value of left ventricular concentric remodeling in uncomplicated mild hypertension. Am J Hypertens. 2004;17:1035–9.

    PubMed  Google Scholar 

  68. Muiesan ML, Salvetti M, Monteduro C, Bonzi B, Paini A, Viola S, et al. Left ventricular concentric geometry during treatment adversely affects cardiovascular prognosis in hypertensive patients. Hypertension. 2004;43:731–8.

    CAS  PubMed  Google Scholar 

  69. Apostolakis S, Sullivan RM, Olshansky B, Lip GY. Left ventricular geometry and outcomes in patients with atrial fibrillation: The affirm trial. Int J Cardiol. 2014;170:303–8. This study demonstrates that even in a population at high-risk for cardiovascular events, hypertension-associated changes in cardiac structure provides independent prognostic information.

    PubMed  Google Scholar 

  70. Verdecchia P, Schillaci G, Borgioni C, Ciucci A, Gattobigio R, Zampi I, et al. Prognostic value of left ventricular mass and geometry in systemic hypertension with left ventricular hypertrophy. Am J Cardiol. 1996;78:197–202.

    CAS  PubMed  Google Scholar 

  71. Ghali JK, Liao Y, Cooper RS. Influence of left ventricular geometric patterns on prognosis in patients with or without coronary artery disease. J Am Coll Cardiol. 1998;31:1635–40.

    CAS  PubMed  Google Scholar 

  72. Krumholz HM, Larson M, Levy D. Prognosis of left ventricular geometric patterns in the framingham heart study. J Am Coll Cardiol. 1995;25:879–84.

    CAS  PubMed  Google Scholar 

  73. Velagaleti RS, Gona P, Pencina MJ, Aragam J, Wang TJ, Levy D, et al. Left ventricular hypertrophy patterns and incidence of heart failure with preserved versus reduced ejection fraction. Am J Cardiol. 2014;113:117–22.

    PubMed  Google Scholar 

  74. Gaasch WH, Zile MR. Left ventricular structural remodeling in health and disease: With special emphasis on volume, mass, and geometry. J Am Coll Cardiol. 2011;58:1733–40. A comprehensive review of the importance of considering geometric cardiac changes in a wide spectrum of cardiovascular diseases.

    PubMed  Google Scholar 

  75. Khouri MG, Peshock RM, Ayers CR, de Lemos JA, Drazner MH. A 4-tiered classification of left ventricular hypertrophy based on left ventricular geometry: The dallas heart study. Circ Cardiovasc Imaging. 2010;3:164–71.

    PubMed  Google Scholar 

  76. Bang CN, Gerdts E, Aurigemma GP, Boman K, Dahlof B, Roman MJ, et al. Systolic left ventricular function according to left ventricular concentricity and dilatation in hypertensive patients: The losartan intervention for endpoint reduction in hypertension study. J Hypertens. 2013;31:2060–8. Echocardiographic substudy of a clinical trial demonstrating that including left ventricle volume in the classification of cardiac geometry can improve the detection of systolic dysfunction in hypertensive patients.

    CAS  PubMed  Google Scholar 

  77. Bella JN, Palmieri V, Roman MJ, Liu JE, Welty TK, Lee ET, et al. Mitral ratio of peak early to late diastolic filling velocity as a predictor of mortality in middle-aged and elderly adults: The strong heart study. Circulation. 2002;105:1928–33.

    PubMed  Google Scholar 

  78. Redfield MM, Jacobsen SJ, Burnett Jr JC, Mahoney DW, Bailey KR, Rodeheffer RJ. Burden of systolic and diastolic ventricular dysfunction in the community: Appreciating the scope of the heart failure epidemic. JAMA. 2003;289:194–202.

    PubMed  Google Scholar 

  79. de Simone G, Kitzman DW, Chinali M, Oberman A, Hopkins PN, Rao DC, et al. Left ventricular concentric geometry is associated with impaired relaxation in hypertension: The hypergen study. Eur Heart J. 2005;26:1039–45.

    PubMed  Google Scholar 

  80. ADVANCE Echocardiography Substudy Investigators, ADVANCE Collaborative Group.. Effects of perindopril-indapamide on left ventricular diastolic function and mass in patients with type 2 diabetes: The advance echocardiography substudy. J Hypertens. 2011;29:721 1439–1447.

    Google Scholar 

  81. Sharp AS, Tapp RJ, Thom SA, Francis DP, Hughes AD, Stanton AV, et al. Tissue doppler e/e' ratio is a powerful predictor of primary cardiac events in a hypertensive population: An ascot substudy. Eur Heart J. 2010;31:747–52.

    PubMed  Google Scholar 

  82. Wachtell K, Smith G, Gerdts E, Dahlof B, Nieminen MS, Papademetriou V, et al. Left ventricular filling patterns in patients with systemic hypertension and left ventricular hypertrophy (the life study). Losartan intervention for endpoint. Am J Cardiol. 2000;85:466–72.

    CAS  PubMed  Google Scholar 

  83. Pearson AC, Labovitz AJ, Mrosek D, Williams GA, Kennedy HL. Assessment of diastolic function in normal and hypertrophied hearts: Comparison of doppler echocardiography and m-mode echocardiography. Am Heart J. 1987;113:1417–25.

    CAS  PubMed  Google Scholar 

  84. Douglas PS, Berko B, Lesh M, Reichek N. Alterations in diastolic function in response to progressive left ventricular hypertrophy. J Am Coll Cardiol. 1989;13:461–7.

    CAS  PubMed  Google Scholar 

  85. Chahal NS, Lim TK, Jain P, Chambers JC, Kooner JS, Senior R. New insights into the relationship of left ventricular geometry and left ventricular mass with cardiac function: A population study of hypertensive subjects. Eur Heart J. 2010;31:588–94.

    PubMed  Google Scholar 

  86. Abhayaratna WP, Seward JB, Appleton CP, Douglas PS, Oh JK, Tajik AJ, et al. Left atrial size: Physiologic determinants and clinical applications. J Am Coll Cardiol. 2006;47:2357–63.

    PubMed  Google Scholar 

  87. Tsioufis C, Stougiannos P, Taxiarchou E, Skiadas I, Chatzis D, Thomopoulos C, et al. The interplay between haemodynamic load, brain natriuretic peptide and left atrial size in the early stages of essential hypertension. J Hypertens. 2006;24:965–72.

    CAS  PubMed  Google Scholar 

  88. Cuspidi C, Rescaldani M, Sala C. Prevalence of echocardiographic left-atrial enlargement in hypertension: A systematic review of recent clinical studies. Am J Hypertens. 2013;26:456–64.

    PubMed  Google Scholar 

  89. Kizer JR, Bella JN, Palmieri V, Liu JE, Best LG, Lee ET, et al. Left atrial diameter as an independent predictor of first clinical cardiovascular events in middle-aged and elderly adults: The strong heart study (shs). Am Heart J. 2006;151:412–8.

    PubMed  Google Scholar 

  90. Verdecchia P, Angeli F, Gattobigio R, Sardone M, Porcellati C. Asymptomatic left ventricular systolic dysfunction in essential hypertension: Prevalence, determinants, and prognostic value. Hypertension. 2005;45:412–8.

    CAS  PubMed  Google Scholar 

  91. The SOLVD investigators. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. The solvd investigattors. N Engl J Med. 1992;327:685–691.

    Google Scholar 

  92. Aurigemma GP, Silver KH, Priest MA, Gaasch WH. Geometric changes allow normal ejection fraction despite depressed myocardial shortening in hypertensive left ventricular hypertrophy. J Am Coll Cardiol. 1995;26:195–202.

    CAS  PubMed  Google Scholar 

  93. de Simone G, Devereux RB, Koren MJ, Mensah GA, Casale PN, Laragh JH. Midwall left ventricular mechanics. An independent predictor of cardiovascular risk in arterial hypertension. Circulation. 1996;93:259–65.

    PubMed  Google Scholar 

  94. Narayanan A, Aurigemma GP, Chinali M, Hill JC, Meyer TE, Tighe DA. Cardiac mechanics in mild hypertensive heart disease: A speckle-strain imaging study. Circ Cardiovasc Imaging. 2009;2:382–90.

    PubMed  Google Scholar 

  95. Kosmala W, Plaksej R, Strotmann JM, Weigel C, Herrmann S, Niemann M, et al. Progression of left ventricular functional abnormalities in hypertensive patients with heart failure: An ultrasonic two-dimensional speckle tracking study. J Am Soc Echocardiogr. 2008;21:1309–17.

    PubMed  Google Scholar 

  96. Leggio M, Sgorbini L, Pugliese M, Mazza A, Bendini MG, Fera MS, et al. Systo-diastolic ventricular function in patients with hypertension: An echocardiographic tissue doppler imaging evaluation study. Int J Cardiovasc Imaging. 2007;23:177–84.

    PubMed  Google Scholar 

  97. Rosen BD, Edvardsen T, Lai S, Castillo E, Pan L, Jerosch-Herold M, et al. Left ventricular concentric remodeling is associated with decreased global and regional systolic function: The multi-ethnic study of atherosclerosis. Circulation. 2005;112:984–91.

    PubMed  Google Scholar 

  98. de Simone G, Kitzman DW, Palmieri V, Liu JE, Oberman A, Hopkins PN, et al. Association of inappropriate left ventricular mass with systolic and diastolic dysfunction: The hypergen study. Am J Hypertens. 2004;17:828–33.

    PubMed  Google Scholar 

  99. Cuspidi C, Sala C, Muiesan ML, De Luca N, Schillaci G. Right ventricular hypertrophy in systemic hypertension: An updated review of clinical studies. J Hypertens. 2013;31:858–65. A recent review that calls attention to the impact of hypertension on the right ventricle.

    CAS  PubMed  Google Scholar 

  100. Cuspidi C, Negri F, Giudici V, Valerio C, Meani S, Sala C, et al. Prevalence and clinical correlates of right ventricular hypertrophy in essential hypertension. J Hypertens. 2009;27:854–60.

    CAS  PubMed  Google Scholar 

  101. Ivanovic BA, Tadic MV, Celic VP. To dip or not to dip? The unique relationship between different blood pressure patterns and cardiac function and structure. J Hum Hypertens. 2013;27:62–70.

    CAS  PubMed  Google Scholar 

  102. Lourenco AP, Roncon-Albuquerque Jr R, Bras-Silva C, Faria B, Wieland J, Henriques-Coelho T, et al. Myocardial dysfunction and neurohumoral activation without remodeling in left ventricle of monocrotaline-induced pulmonary hypertensive rats. Am J Physiol Heart Circ Physiol. 2006;291:H1587–94.

    CAS  PubMed  Google Scholar 

  103. Laks MM, Morady F. Norepinephrine–the myocardial hypertrophy hormone? Am Heart J. 1976;91:674–5.

    CAS  PubMed  Google Scholar 

  104. Tadic M, Cuspidi C, Suzic-Lazic J, Andric A, Stojcevski B, Ivanovic B, Hot S, Scepanovic R, Celic V. Is there a relationship between right-ventricular and right atrial mechanics and functional capacity in hypertensive patients? J Hypertens. 2014

  105. Barron AJ, Hughes AD, Sharp A, Baksi AJ, Surendran P, Jabbour RJ, et al. Long-term antihypertensive treatment fails to improve e/e' despite regression of left ventricular mass: An anglo-scandinavian cardiac outcomes trial substudy. Hypertension. 2014;63:252–8. An echocardiographic substudy of a hypertension therapeutic trial demonstrating a divergent effect of antihypertensive treatment on left ventricle hypertrophy and diastolic function.

    CAS  PubMed  Google Scholar 

  106. Fagard RH, Celis H, Thijs L, Wouters S. Regression of left ventricular mass by antihypertensive treatment: A meta-analysis of randomized comparative studies. Hypertension. 2009;54:1084–91.

    CAS  PubMed  Google Scholar 

  107. Wachtell K, Dahlof B, Rokkedal J, Papademetriou V, Nieminen MS, Smith G, et al. Change of left ventricular geometric pattern after 1 year of antihypertensive treatment: The losartan intervention for endpoint reduction in hypertension (life) study. Am Heart J. 2002;144:1057–64.

    CAS  PubMed  Google Scholar 

  108. Solomon SD, Janardhanan R, Verma A, Bourgoun M, Daley WL, Purkayastha D, et al. Effect of angiotensin receptor blockade and antihypertensive drugs on diastolic function in patients with hypertension and diastolic dysfunction: A randomised trial. Lancet. 2007;369:2079–87.

    CAS  PubMed  Google Scholar 

  109. Solomon SD, Verma A, Desai A, Hassanein A, Izzo J, Oparil S, et al. Effect of intensive versus standard blood pressure lowering on diastolic function in patients with uncontrolled hypertension and diastolic dysfunction. Hypertension. 2010;55:241–8.

    CAS  PubMed  Google Scholar 

  110. Almuntaser I, Mahmud A, Brown A, Murphy R, King G, Crean P, et al. Blood pressure control determines improvement in diastolic dysfunction in early hypertension. Am J Hypertens. 2009;22:1227–31.

    PubMed  Google Scholar 

  111. Diez J, Frohlich ED. A translational approach to hypertensive heart disease. Hypertension. 2010;55:1–8.

    CAS  PubMed  Google Scholar 

  112. Burchfield JS, Xie M, Hill JA. Pathological ventricular remodeling: Mechanisms: Part 1 of 2. Circulation. 2013;128:388–400.

    PubMed  Google Scholar 

Download references

Funding Source

The work for this manuscript was supported by the Portuguese Foundation for Science and Technology grant HMSP-ICJ/0013/2012 (M.S.) and NHLBI grant 1K08HL116792-01A1 (A.M.S.).

Compliance with Ethics Guidelines

Conflict of Interest

Mário Santos declares that he has no conflict of interest.

Amil M. Shah declares that the work for this manuscript was partially supported by NHLBI grant 1K08HL116792-01A1. Dr. Shah is a recipient of a career development award (NHLBI grant 1K08HL116792-01A1) from NIH/NHLBI.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amil M. Shah.

Additional information

This article is part of the Topical Collection on Hypertension and the Heart

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, M., Shah, A.M. Alterations in Cardiac Structure and Function in Hypertension. Curr Hypertens Rep 16, 428 (2014). https://doi.org/10.1007/s11906-014-0428-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-014-0428-x

Keywords

Navigation