Skip to main content

Advertisement

Log in

What Are New Avenues for Renal Protection, in Addition to RAAS Inhibition?

  • Hypertension: Kidney, Sodium, and Renin-Angiotensin System (R Carey and A Mimran, Section Editors)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Diabetic nephropathy is the leading cause of end-stage renal disease, with both the incidence and prevalence continuing to increase worldwide. Current treatments include optimization of glycemic and blood pressure control by targeting the renin-angiotensin-aldosterone system (RAAS) with angiotensin-converting enzyme (ACE) inhibitors and/or angiotensin II receptor blockers. More innovative strategies are needed to prevent and treat this disease. New agents and approaches have recently been described that have the potential to delay the progression of diabetic kidney disease and minimize the growing burden of end-stage renal disease. Possible targets include the formation of advanced glycation end products (AGEs) and the AGE receptor, increased oxidative stress and inflammation, protein kinase C, endothelin receptors, growth factors and cytokines, the vitamin D receptor, Rho-associated kinases, and the renal sympathetic system. This article reviews these recent developments as potential therapeutic interventions that may prevent this disease, with targets generally beyond the RAAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047–53.

    PubMed  Google Scholar 

  2. Stenvinkel P. Chronic kidney disease: a public health priority and harbinger of premature cardiovascular disease. J Intern Med. 2010;268:456–67.

    PubMed  CAS  Google Scholar 

  3. Sarnak MJ, Levey AS, Schoolwerth AC, et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation. 2003;108:2154–69.

    PubMed  Google Scholar 

  4. Gaede P, Lund-Andersen H, Parving HH, Pedersen O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358:580–91.

    PubMed  CAS  Google Scholar 

  5. Cachofeiro V, Goicochea M, de Vinuesa SG, Oubina P, Lahera V, Luno J. Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. Kidney Int Suppl. 2008:S4–9.

  6. Cooper ME. Interaction of metabolic and haemodynamic factors in mediating experimental diabetic nephropathy. Diabetologia. 2001;44:1957–72.

    PubMed  CAS  Google Scholar 

  7. Gilbert RE, Cox A, Wu LL, et al. Expression of transforming growth factor-beta1 and type IV collagen in the renal tubulointerstitium in experimental diabetes: effects of ACE inhibition. Diabetes. 1998;47:414–22.

    PubMed  CAS  Google Scholar 

  8. Yamagishi S, Fukami K, Ueda S, Okuda S. Molecular mechanisms of diabetic nephropathy and its therapeutic intervention. Curr Drug Targets. 2007;8:952–9.

    PubMed  CAS  Google Scholar 

  9. Patel A, MacMahon S, Chalmers J, et al. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial. Lancet. 2007;370:829–40.

    PubMed  CAS  Google Scholar 

  10. Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345:861–9.

    PubMed  CAS  Google Scholar 

  11. Cooper ME. The role of the renin-angiotensin-aldosterone system in diabetes and its vascular complications. Am J Hypertens. 2004;17:16S–20S. quiz A2-4.

    PubMed  CAS  Google Scholar 

  12. Mogensen CE, Neldam S, Tikkanen I, et al. Randomised controlled trial of dual blockade of renin-angiotensin system in patients with hypertension, microalbuminuria, and non-insulin dependent diabetes: the candesartan and lisinopril microalbuminuria (CALM) study. BMJ. 2000;321:1440–4.

    PubMed  CAS  Google Scholar 

  13. Parving HH, Persson F, Lewis JB, Lewis EJ, Hollenberg NK. Aliskiren combined with losartan in type 2 diabetes and nephropathy. N Engl J Med. 2008;358:2433–46.

    PubMed  CAS  Google Scholar 

  14. Tylicki L, Rutkowski P, Renke M, et al. Triple pharmacological blockade of the renin-angiotensin-aldosterone system in nondiabetic CKD: an open-label crossover randomized controlled trial. Am J Kidney Dis. 2008;52:486–93.

    PubMed  CAS  Google Scholar 

  15. Yusuf S, Teo KK, Pogue J, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008;358:1547–59.

    PubMed  CAS  Google Scholar 

  16. Mauer M, Zinman B, Gardiner R, et al. Renal and retinal effects of enalapril and losartan in type 1 diabetes. N Engl J Med. 2009;361:40–51.

    PubMed  CAS  Google Scholar 

  17. Bilous R, Chaturvedi N, Sjolie AK, et al. Effect of candesartan on microalbuminuria and albumin excretion rate in diabetes: three randomized trials. Ann Intern Med. 2009;151(11–20):W3–4.

    Google Scholar 

  18. Wendt TM, Tanji N, Guo J, et al. RAGE drives the development of glomerulosclerosis and implicates podocyte activation in the pathogenesis of diabetic nephropathy. Am J Pathol. 2003;162:1123–37.

    PubMed  CAS  Google Scholar 

  19. Gu L, Hagiwara S, Fan Q, et al. Role of receptor for advanced glycation end-products and signalling events in advanced glycation end-product-induced monocyte chemoattractant protein-1 expression in differentiated mouse podocytes. Nephrol Dial Transplant. 2006;21:299–313.

    PubMed  CAS  Google Scholar 

  20. Bolton WK, Cattran DC, Williams ME, et al. Randomized trial of an inhibitor of formation of advanced glycation end products in diabetic nephropathy. Am J Nephrol. 2004;24:32–40.

    PubMed  CAS  Google Scholar 

  21. Tilton RG, Chang K, Hasan KS, et al. Prevention of diabetic vascular dysfunction by guanidines. Inhibition of nitric oxide synthase versus advanced glycation end-product formation. Diabetes. 1993;42:221–32.

    PubMed  CAS  Google Scholar 

  22. Suji G, Sivakami S. DNA damage by free radical production by aminoguanidine. Ann N Y Acad Sci. 2006;1067:191–9.

    PubMed  CAS  Google Scholar 

  23. Wilkinson-Berka JL, Kelly DJ, Koerner SM, et al. ALT-946 and aminoguanidine, inhibitors of advanced glycation, improve severe nephropathy in the diabetic transgenic (mREN-2)27 rat. Diabetes. 2002;51:3283–9.

    PubMed  CAS  Google Scholar 

  24. Tanimoto M, Gohda T, Kaneko S, et al. Effect of pyridoxamine (K-163), an inhibitor of advanced glycation end products, on type 2 diabetic nephropathy in KK-A(y)/Ta mice. Metabolism. 2007;56:160–7.

    PubMed  CAS  Google Scholar 

  25. Williams ME, Bolton WK, Khalifah RG, Degenhardt TP, Schotzinger RJ, McGill JB. Effects of pyridoxamine in combined phase 2 studies of patients with type 1 and type 2 diabetes and overt nephropathy. Am J Nephrol. 2007;27:605–14.

    PubMed  CAS  Google Scholar 

  26. Babaei-Jadidi R, Karachalias N, Ahmed N, Battah S, Thornalley PJ. Prevention of incipient diabetic nephropathy by high-dose thiamine and benfotiamine. Diabetes. 2003;52:2110–20.

    PubMed  CAS  Google Scholar 

  27. • Rabbani N, Alam SS, Riaz S, et al. High-dose thiamine therapy for patients with type 2 diabetes and microalbuminuria: a randomised, double-blind placebo-controlled pilot study. Diabetologia. 2009;52:208–12. In this clinical study, patients with diabetic nephropathy were treated with high-dose thiamine.

    PubMed  CAS  Google Scholar 

  28. • Alkhalaf A, Klooster A, van Oeveren W, et al. A double-blind, randomized, placebo-controlled clinical trial on benfotiamine treatment in patients with diabetic nephropathy. Diabetes Care. 2010;33:1598–601. This is a clinical study with benfotiamine treatment in patients with diabetic nephropathy.

    PubMed  CAS  Google Scholar 

  29. Nakamura S, Makita Z, Ishikawa S, et al. Progression of nephropathy in spontaneous diabetic rats is prevented by OPB-9195, a novel inhibitor of advanced glycation. Diabetes. 1997;46:895–9.

    PubMed  CAS  Google Scholar 

  30. Figarola JL, Scott S, Loera S, et al. Prevention of early renal disease, dyslipidaemia and lipid peroxidation in STZ-diabetic rats by LR-9 and LR-74, novel AGE inhibitors. Diabetes Metab Res Rev. 2005;21:533–44.

    PubMed  CAS  Google Scholar 

  31. Izuhara Y, Nangaku M, Takizawa S, et al. A novel class of advanced glycation inhibitors ameliorates renal and cardiovascular damage in experimental rat models. Nephrol Dial Transplant. 2008;23:497–509.

    PubMed  CAS  Google Scholar 

  32. Coughlan MT, Forbes JM, Cooper ME. Role of the AGE crosslink breaker, alagebrium, as a renoprotective agent in diabetes. Kidney Int Suppl. 2007:S54–60.

  33. Forbes JM, Thallas V, Thomas MC, et al. The breakdown of preexisting advanced glycation end products is associated with reduced renal fibrosis in experimental diabetes. FASEB J. 2003;17:1762–4.

    PubMed  CAS  Google Scholar 

  34. Zieman SJ, Melenovsky V, Clattenburg L, et al. Advanced glycation endproduct crosslink breaker (alagebrium) improves endothelial function in patients with isolated systolic hypertension. J Hypertens. 2007;25:577–83.

    PubMed  CAS  Google Scholar 

  35. Kass DA, Shapiro EP, Kawaguchi M, et al. Improved arterial compliance by a novel advanced glycation end-product crosslink breaker. Circulation. 2001;104:1464–70.

    PubMed  CAS  Google Scholar 

  36. Joshi D, Gupta R, Dubey A, et al. TRC4186, a novel AGE-breaker, improves diabetic cardiomyopathy and nephropathy in Ob-ZSF1 model of type 2 diabetes. J Cardiovasc Pharmacol. 2009;54:72–81.

    PubMed  CAS  Google Scholar 

  37. Flyvbjerg A, Denner L, Schrijvers BF, et al. Long-term renal effects of a neutralizing RAGE antibody in obese type 2 diabetic mice. Diabetes. 2004;53:166–72.

    PubMed  CAS  Google Scholar 

  38. Yamamoto Y, Kato I, Doi T, et al. Development and prevention of advanced diabetic nephropathy in RAGE-overexpressing mice. J Clin Invest. 2001;108:261–8.

    PubMed  CAS  Google Scholar 

  39. Wautier JL, Guillausseau PJ. Advanced glycation end products, their receptors and diabetic angiopathy. Diabetes Metab. 2001;27:535–42.

    PubMed  CAS  Google Scholar 

  40. Yates MS, Tauchi M, Katsuoka F, et al. Pharmacodynamic characterization of chemopreventive triterpenoids as exceptionally potent inducers of Nrf2-regulated genes. Mol Cancer Ther. 2007;6:154–62.

    PubMed  CAS  Google Scholar 

  41. •• Pergola PE, Raskin P, Toto RD, et al. Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N Engl J Med. 2011;365:327–36. This is a clinical study with bardoxolone methyl treatment in CKD with type 2 diabetes.

    PubMed  CAS  Google Scholar 

  42. Gealekman O, Brodsky SV, Zhang F, et al. Endothelial dysfunction as a modifier of angiogenic response in Zucker diabetic fat rat: amelioration with Ebselen. Kidney Int. 2004;66:2337–47.

    PubMed  CAS  Google Scholar 

  43. Chew P, Yuen DY, Stefanovic N, et al. Antiatherosclerotic and renoprotective effects of ebselen in the diabetic apolipoprotein E/GPx1-double knockout mouse. Diabetes. 2010;59:3198–207.

    PubMed  CAS  Google Scholar 

  44. Chabrashvili T, Tojo A, Onozato ML, et al. Expression and cellular localization of classic NADPH oxidase subunits in the spontaneously hypertensive rat kidney. Hypertension. 2002;39:269–74.

    PubMed  CAS  Google Scholar 

  45. Tojo A, Asaba K, Onozato ML. Suppressing renal NADPH oxidase to treat diabetic nephropathy. Expert Opin Ther Targets. 2007;11:1011–8.

    PubMed  CAS  Google Scholar 

  46. Nam SM, Lee MY, Koh JH, et al. Effects of NADPH oxidase inhibitor on diabetic nephropathy in OLETF rats: the role of reducing oxidative stress in its protective property. Diabetes Res Clin Pract. 2009;83:176–82.

    PubMed  CAS  Google Scholar 

  47. Gorin Y, Block K, Hernandez J, et al. Nox4 NAD(P)H oxidase mediates hypertrophy and fibronectin expression in the diabetic kidney. J Biol Chem. 2005;280:39616–26.

    PubMed  CAS  Google Scholar 

  48. Sedeek M, Callera G, Montezano A, et al. Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy. Am J Physiol Renal Physiol. 2010;299:F1348–58.

    PubMed  CAS  Google Scholar 

  49. Donadio Jr JV, Bergstralh EJ, Offord KP, Spencer DC, Holley KE. A controlled trial of fish oil in IgA nephropathy. Mayo Nephrology Collaborative Group. N Engl J Med. 1994;331:1194–9.

    PubMed  Google Scholar 

  50. Goldstein DJ, Wheeler DC, Sandstrom DJ, Kawachi H, Salant DJ. Fish oil ameliorates renal injury and hyperlipidemia in the Milan normotensive rat model of focal glomerulosclerosis. J Am Soc Nephrol. 1995;6:1468–75.

    PubMed  CAS  Google Scholar 

  51. Hagiwara S, Makita Y, Gu L, et al. Eicosapentaenoic acid ameliorates diabetic nephropathy of type 2 diabetic KKAy/Ta mice: involvement of MCP-1 suppression and decreased ERK1/2 and p38 phosphorylation. Nephrol Dial Transplant. 2006;21:605–15.

    PubMed  CAS  Google Scholar 

  52. Theuer J, Shagdarsuren E, Muller DN, et al. Inducible NOS inhibition, eicosapentaenoic acid supplementation, and angiotensin II-induced renal damage. Kidney Int. 2005;67:248–58.

    PubMed  CAS  Google Scholar 

  53. Tsipas G, Morphake P. Beneficial effects of a diet rich in a mixture of n - 6/n - 3 essential fatty acids and of their metabolites on cyclosporine - nephrotoxicity. J Nutr Biochem. 2003;14:626–32.

    PubMed  CAS  Google Scholar 

  54. Taneda S, Honda K, Tomidokoro K, Uto K, Nitta K, Oda H. Eicosapentaenoic acid restores diabetic tubular injury through regulating oxidative stress and mitochondrial apoptosis. Am J Physiol Renal Physiol. 2010;299:F1451–61.

    PubMed  CAS  Google Scholar 

  55. Wong CY, Yiu KH, Li SW, et al. Fish-oil supplement has neutral effects on vascular and metabolic function but improves renal function in patients with Type 2 diabetes mellitus. Diabet Med. 2010;27:54–60.

    PubMed  CAS  Google Scholar 

  56. Miller 3rd ER, Juraschek SP, Appel LJ, et al. The effect of n-3 long-chain polyunsaturated fatty acid supplementation on urine protein excretion and kidney function: meta-analysis of clinical trials. Am J Clin Nutr. 2009;89:1937–45.

    PubMed  CAS  Google Scholar 

  57. Guerrero-Romero F, Rodriguez-Moran M, Paniagua-Sierra JR, Garcia-Bulnes G, Salas-Ramirez M, Amato D. Pentoxifylline reduces proteinuria in insulin-dependent and non insulin-dependent diabetic patients. Clin Nephrol. 1995;43:116–21.

    PubMed  CAS  Google Scholar 

  58. Rodriguez-Moran M, Guerrero-Romero F. Pentoxifylline is as effective as captopril in the reduction of microalbuminuria in non-hypertensive type 2 diabetic patients–a randomized, equivalent trial. Clin Nephrol. 2005;64:91–7.

    PubMed  CAS  Google Scholar 

  59. McCormick BB, Sydor A, Akbari A, Fergusson D, Doucette S, Knoll G. The effect of pentoxifylline on proteinuria in diabetic kidney disease: a meta-analysis. Am J Kidney Dis. 2008;52:454–63.

    PubMed  CAS  Google Scholar 

  60. Thallas-Bonke V, Lindschau C, Rizkalla B, et al. Attenuation of extracellular matrix accumulation in diabetic nephropathy by the advanced glycation end product cross-link breaker ALT-711 via a protein kinase C-alpha-dependent pathway. Diabetes. 2004;53:2921–30.

    PubMed  CAS  Google Scholar 

  61. Menne J, Park JK, Boehne M, et al. Diminished loss of proteoglycans and lack of albuminuria in protein kinase C-alpha-deficient diabetic mice. Diabetes. 2004;53:2101–9.

    PubMed  CAS  Google Scholar 

  62. Koya D, Jirousek MR, Lin YW, Ishii H, Kuboki K, King GL. Characterization of protein kinase C beta isoform activation on the gene expression of transforming growth factor-beta, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats. J Clin Invest. 1997;100:115–26.

    PubMed  CAS  Google Scholar 

  63. Koya D, Haneda M, Nakagawa H, et al. Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC beta inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes. FASEB J. 2000;14:439–47.

    PubMed  CAS  Google Scholar 

  64. Tuttle KR, Bakris GL, Toto RD, McGill JB, Hu K, Anderson PW. The effect of ruboxistaurin on nephropathy in type 2 diabetes. Diabetes Care. 2005;28:2686–90.

    PubMed  CAS  Google Scholar 

  65. Tuttle KR, McGill JB, Haney DJ, Lin TE, Anderson PW. Kidney outcomes in long-term studies of ruboxistaurin for diabetic eye disease. Clin J Am Soc Nephrol. 2007;2:631–6.

    PubMed  CAS  Google Scholar 

  66. Yamamoto T, Nakamura T, Noble NA, Ruoslahti E, Border WA. Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy. Proc Natl Acad Sci U S A. 1993;90:1814–8.

    PubMed  CAS  Google Scholar 

  67. Ziyadeh FN, Hoffman BB, Han DC, et al. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice. Proc Natl Acad Sci U S A. 2000;97:8015–20.

    PubMed  CAS  Google Scholar 

  68. Russo LM, del Re E, Brown D, Lin HY. Evidence for a role of transforming growth factor (TGF)-beta1 in the induction of postglomerular albuminuria in diabetic nephropathy: amelioration by soluble TGF-beta type II receptor. Diabetes. 2007;56:380–8.

    PubMed  CAS  Google Scholar 

  69. Sugaru E, Nakagawa T, Ono-Kishino M, et al. SMP-534 ameliorates progression of glomerular fibrosis and urinary albumin in diabetic db/db mice. Am J Physiol Renal Physiol. 2006;290:F813–20.

    PubMed  CAS  Google Scholar 

  70. Sugaru E, Nakagawa T, Ono-Kishino M, et al. Enhanced effect of combined treatment with SMP-534 (antifibrotic agent) and losartan in diabetic nephropathy. Am J Nephrol. 2006;26:50–8.

    PubMed  CAS  Google Scholar 

  71. Shibuya K, Kanasaki K, Isono M, et al. N-acetyl-seryl-aspartyl-lysyl-proline prevents renal insufficiency and mesangial matrix expansion in diabetic db/db mice. Diabetes. 2005;54:838–45.

    PubMed  CAS  Google Scholar 

  72. Chai Z, Sarcevic B, Mawson A, Toh BH. SET-related cell division autoantigen-1 (CDA1) arrests cell growth. J Biol Chem. 2001;276:33665–74.

    PubMed  CAS  Google Scholar 

  73. Tu Y, Wu T, Dai A, et al. Cell division autoantigen 1 enhances signaling and the profibrotic effects of transforming growth factor-beta in diabetic nephropathy. Kidney Int. 2011;79:199–209.

    PubMed  CAS  Google Scholar 

  74. RamachandraRao SP, Zhu Y, Ravasi T, et al. Pirfenidone is renoprotective in diabetic kidney disease. J Am Soc Nephrol. 2009;20:1765–75.

    PubMed  CAS  Google Scholar 

  75. Cho ME, Smith DC, Branton MH, Penzak SR, Kopp JB. Pirfenidone slows renal function decline in patients with focal segmental glomerulosclerosis. Clin J Am Soc Nephrol. 2007;2:906–13.

    PubMed  CAS  Google Scholar 

  76. •• Sharma K, Ix JH, Mathew AV, et al. Pirfenidone for diabetic nephropathy. J Am Soc Nephrol. 2011;22:1144–51. This is a clinical study with pirfenidone treatment in type 1 and type 2 diabetic patients with albuminuria.

    PubMed  CAS  Google Scholar 

  77. Twigg SM, Cooper ME. The time has come to target connective tissue growth factor in diabetic complications. Diabetologia. 2004;47:965–8.

    PubMed  CAS  Google Scholar 

  78. Yokoi H, Mukoyama M, Nagae T, et al. Reduction in connective tissue growth factor by antisense treatment ameliorates renal tubulointerstitial fibrosis. J Am Soc Nephrol. 2004;15:1430–40.

    PubMed  CAS  Google Scholar 

  79. Guha M, Xu ZG, Tung D, Lanting L, Natarajan R. Specific down-regulation of connective tissue growth factor attenuates progression of nephropathy in mouse models of type 1 and type 2 diabetes. FASEB J. 2007;21:3355–68.

    PubMed  CAS  Google Scholar 

  80. Adler SG, Schwartz S, Williams ME, et al. Phase 1 study of anti-CTGF monoclonal antibody in patients with diabetes and microalbuminuria. Clin J Am Soc Nephrol. 2010;5:1420–8.

    PubMed  CAS  Google Scholar 

  81. Kelly DJ, Gilbert RE, Cox AJ, Soulis T, Jerums G, Cooper ME. Aminoguanidine ameliorates overexpression of prosclerotic growth factors and collagen deposition in experimental diabetic nephropathy. J Am Soc Nephrol. 2001;12:2098–107.

    PubMed  CAS  Google Scholar 

  82. Lassila M, Jandeleit-Dahm K, Seah KK, et al. Imatinib attenuates diabetic nephropathy in apolipoprotein E-knockout mice. J Am Soc Nephrol. 2005;16:363–73.

    PubMed  CAS  Google Scholar 

  83. Lassila M, Allen TJ, Cao Z, et al. Imatinib attenuates diabetes-associated atherosclerosis. Arterioscler Thromb Vasc Biol. 2004;24:935–42.

    PubMed  CAS  Google Scholar 

  84. Iyoda M, Shibata T, Hirai Y, Kuno Y, Akizawa T. Nilotinib attenuates renal injury and prolongs survival in chronic kidney disease. J Am Soc Nephrol. 2011;22:1486–96.

    PubMed  CAS  Google Scholar 

  85. Bergsten E, Uutela M, Li X, et al. PDGF-D is a specific, protease-activated ligand for the PDGF beta-receptor. Nat Cell Biol. 2001;3:512–6.

    PubMed  CAS  Google Scholar 

  86. Ostendorf T, van Roeyen CR, Peterson JD, et al. A fully human monoclonal antibody (CR002) identifies PDGF-D as a novel mediator of mesangioproliferative glomerulonephritis. J Am Soc Nephrol. 2003;14:2237–47.

    PubMed  CAS  Google Scholar 

  87. Ostendorf T, Rong S, Boor P, et al. Antagonism of PDGF-D by human antibody CR002 prevents renal scarring in experimental glomerulonephritis. J Am Soc Nephrol. 2006;17:1054–62.

    PubMed  CAS  Google Scholar 

  88. Hawthorne T, Giot L, Blake L, et al. A phase I study of CR002, a fully-human monoclonal antibody against platelet-derived growth factor-D. Int J Clin Pharmacol Ther. 2008;46:236–44.

    PubMed  CAS  Google Scholar 

  89. Cooper ME, Vranes D, Youssef S, et al. Increased renal expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in experimental diabetes. Diabetes. 1999;48:2229–39.

    PubMed  CAS  Google Scholar 

  90. de Vriese AS, Tilton RG, Elger M, Stephan CC, Kriz W, Lameire NH. Antibodies against vascular endothelial growth factor improve early renal dysfunction in experimental diabetes. J Am Soc Nephrol. 2001;12:993–1000.

    PubMed  Google Scholar 

  91. Advani A, Kelly DJ, Advani SL, et al. Role of VEGF in maintaining renal structure and function under normotensive and hypertensive conditions. Proc Natl Acad Sci U S A. 2007;104:14448–53.

    PubMed  CAS  Google Scholar 

  92. Noma K, Oyama N, Liao JK. Physiological role of ROCKs in the cardiovascular system. Am J Physiol Cell Physiol. 2006;290:C661–8.

    PubMed  CAS  Google Scholar 

  93. Rikitake Y, Liao JK. Rho GTPases, statins, and nitric oxide. Circ Res. 2005;97:1232–5.

    PubMed  CAS  Google Scholar 

  94. Matsumoto M, Tanimoto M, Gohda T, et al. Effect of pitavastatin on type 2 diabetes mellitus nephropathy in KK-Ay/Ta mice. Metabolism. 2008;57:691–7.

    PubMed  CAS  Google Scholar 

  95. Gojo A, Utsunomiya K, Taniguchi K, et al. The Rho-kinase inhibitor, fasudil, attenuates diabetic nephropathy in streptozotocin-induced diabetic rats. Eur J Pharmacol. 2007;568:242–7.

    PubMed  CAS  Google Scholar 

  96. Kolavennu V, Zeng L, Peng H, Wang Y, Danesh FR. Targeting of RhoA/ROCK signaling ameliorates progression of diabetic nephropathy independent of glucose control. Diabetes. 2008;57:714–23.

    PubMed  CAS  Google Scholar 

  97. Wang B, Komers R, Carew R, et al. Suppression of microRNA-29 Expression by TGF-β1 Promotes Collagen Expression and Renal Fibrosis. J Am Soc Nephrol. 2011 Nov 17 (Epub ahead of print).

  98. Deb DK, Sun T, Wong KE, et al. Combined vitamin D analog and AT1 receptor antagonist synergistically block the development of kidney disease in a model of type 2 diabetes. Kidney Int. 2010;77:1000–9.

    PubMed  CAS  Google Scholar 

  99. Ohara I, Tanimoto M, Gohda T, et al. Effect of combination therapy with angiotensin receptor blocker and 1,25-dihydroxyvitamin D(3) in type 2 diabetic nephropathy in KK-A(y)/Ta mice. Nephron Exp Nephrol. 2011;117:e124–32.

    PubMed  CAS  Google Scholar 

  100. •• de Zeeuw D, Agarwal R, Amdahl M, et al. Selective vitamin D receptor activation with paricalcitol for reduction of albuminuria in patients with type 2 diabetes (VITAL study): a randomised controlled trial. Lancet. 2010;376:1543–51. This study demonstrated that vitamin D receptor activation had an additive effect in diabetic nephropathy above that of the inhibition of the renin-angiotensin-aldosterone system.

    PubMed  Google Scholar 

  101. Kohan DE. The renal medullary endothelin system in control of sodium and water excretion and systemic blood pressure. Curr Opin Nephrol Hypertens. 2006;15:34–40.

    PubMed  CAS  Google Scholar 

  102. Sorokin A, Kohan DE. Physiology and pathology of endothelin-1 in renal mesangium. Am J Physiol Renal Physiol. 2003;285:F579–89.

    PubMed  CAS  Google Scholar 

  103. • Mann JF, Green D, Jamerson K, et al. Avosentan for overt diabetic nephropathy. J Am Soc Nephrol. 2010;21:527–35. This is a clinical study with avosentan treatment in patients with diabetic nephropathy.

    PubMed  CAS  Google Scholar 

  104. •• Kohan DE, Pritchett Y, Molitch M, et al. Addition of atrasentan to renin-angiotensin system blockade reduces albuminuria in diabetic nephropathy. J Am Soc Nephrol. 2011;22:763–72. This study demonstrated additional antialbuminuric effects of atrasentan treatment in diabetic nephropathy, above those seen with inhibition of the renin-angiotensin-aldosterone system.

    PubMed  CAS  Google Scholar 

  105. Christiansen JS. On the pathogenesis of the increased glomerular filtration rate in short-term insulin-dependent diabetes. Dan Med Bull. 1984;31:349–61.

    PubMed  CAS  Google Scholar 

  106. Luippold G, Beilharz M, Muhlbauer B. Chronic renal denervation prevents glomerular hyperfiltration in diabetic rats. Nephrol Dial Transplant. 2004;19:342–7.

    PubMed  Google Scholar 

  107. •• Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Bohm M. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet. 2010;376:1903–9. This study demonstrated the clinical effectiveness and safety of renal denervation for the reduction of blood pressure in patients with treatment-resistant hypertension, including CKD.

    PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Cooper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagiwara, S., Kantharidis, P. & Cooper, M.E. What Are New Avenues for Renal Protection, in Addition to RAAS Inhibition?. Curr Hypertens Rep 14, 100–110 (2012). https://doi.org/10.1007/s11906-012-0251-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-012-0251-1

Keywords

Navigation