Skip to main content
Log in

Vasopeptidase inhibition: Effective blood pressure control for vascular protection

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Angiotensin converting enzyme (ACE) inhibition is a well-established principle in the treatment of hypertension, and numerous large scale clinical studies have clearly demonstrated the beneficial effects of inhibiting the renin-angiotensin-aldosterone system (RAS) in hypertension. The clinical success of ACE inhibitors encouraged attempts to inhibit other key enzymes in the regulation of vascular tone, such as the neutral endopeptidase (NEP). Similar to ACE, NEP is an endothelial cell surface metalloproteinase, which is involved in the degradation of several regulatory peptides including the natriuretic peptides, and augments vasodilatation and natriuresis through increased levels of atrial natriuretic peptide. By inhibiting the RAS and potentiating the natriuretic peptide system at the same time, combined NEP/ACE inhibitors, the so-called “vasopeptidase inhibitors,” reduce vasoconstriction and enhance vasodilatation, and in turn decrease peripheral vascular resistance and blood pressure. Within the vessel wall this may lead to a reduction of vasoconstrictor and proliferative mediators such as angiotensin II and endothelin-1, and may increase local levels of bradykinin as well as natriuretic peptides. Based on these considerations, numerous preclinicial studies with vasopeptidase inhibitors have been performed and reveal promising results in experimental hypertension. Correspondingly, large-scale clinical studies in patients with hypertension are on the way, to transfer the principle of vasopeptidase inhibition from bench to bedside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Cheung BM, Lau CP: Fosinopril reduces left ventricular mass in untreated hypertensive patients: a controlled trial. Br J Pharmacol 1999, 47:179–187.

    Article  CAS  Google Scholar 

  2. Hansson L, Lindholm LH, Niskanen L, et al.: Effects of angiotensin- converting-enzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension: the Captopril Prevention Project (CAPPP) randomised trial. Lancet 1999, 353:611–616.

    Article  PubMed  CAS  Google Scholar 

  3. Swedberg K, Held P, Kjekshus J, et al.: Effects of the early administration of enalapril on mortality in patients with acute myocardial infarction. Results of the Cooperative New Scandinavian Enalapril Survival Study II (CONSENSUS II). N Engl J Med 1992, 327:678–684.

    Article  PubMed  CAS  Google Scholar 

  4. GISSI-3: Effects of lisinopril and transdermal glyceryl trinitrate singly and together on 6-week mortality and ventricular function after acute myocardial infarction. Gruppo Italiano per lo Studio della Sopravvivenza nell’infarto Miocardico. Lancet 1994, 343:1115–1122.

    Google Scholar 

  5. Pfeffer MA, Braunwald E, Moye LA, et al.: Effect of captopril on mortality and morbidity in patients with left ventricular dysfunciton after myocardial infarction. Results of the survival and ventriuclar enlargement trial. The SAVE investigators. N Engl J Med 1992, 327:669–677.

    Article  PubMed  CAS  Google Scholar 

  6. Ambrosioni E, Borghi C, Magnani B: The effect of the angiotensin- converting-enzyme inhibitor zofenopril on mortality and morbidity after anterior myocardial infarction. The Survival of Myocardial Infarction Long-Term. Evaluation (SMILE) Study Investigators. N Engl J Med 1995, 332:80–85.

    Article  PubMed  CAS  Google Scholar 

  7. Yusuf S, Pepine CJ, Garces C, et al.: Effect of enalapril on myocardial infarction and unstable angina in patients with low ejection fractions. Lancet 1992, 340:1173–1178.

    Article  PubMed  CAS  Google Scholar 

  8. Yusuf S, Sleight P, Pogue J, Bosch J, et al.: Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 2000, 342:145–153.

    Article  PubMed  CAS  Google Scholar 

  9. Scholkens BA: Kinins in the cardiovascular system. Immunopharmacology 1996, 33:209–216.

    Article  PubMed  CAS  Google Scholar 

  10. Zhang X, Xie YW, Nasjletti A, et al.: ACE inhibitors promote nitric oxide accumulation to modulate myocardial oxygen consumption. Circulation 1997, 95:176–182.

    PubMed  Google Scholar 

  11. Wiemer G, Scholkens BA, Becker RH, Busse R: Ramiprilat enhances endothelial autacoid formation by inhibiting breakdown of endothelium-derived bradykinin. Hypertension 1991, 18:558–563.

    PubMed  CAS  Google Scholar 

  12. Erdos EG, Skidgel RA: Neutral endopeptidase 24.11 (enkephalinase) and related regulators of peptide hormones. FASEB J 1989, 3:145–151.

    PubMed  CAS  Google Scholar 

  13. Murphy LJ, Corder R, Mallet AI, Turner AJ: Generation by the phosphoramidon-sensitive peptidases, endopeptidase-24.11 and thermolysin, of endothelin-1 and c- terminal fragment from big endothelin-1. Br J Pharmacol 1994, 113:137–142.

    PubMed  CAS  Google Scholar 

  14. Richards AM, Wittert GA, Crozier IG, et al.: Chronic inhibition of endopeptidase 24.11 in essential hypertension: evidence for enhanced atrial natriuretic peptide and angiotensin II. J Hypertens 1993, 11:407–416.

    Article  PubMed  CAS  Google Scholar 

  15. Fournie-Zaluski MC, Gonzalez W, Turcaud S, et al.: Dual inhibition of angiotensin-converting enzyme and neutral endopeptidase by the orally active inhibitor mixanpril: a potential therapeutic approach in hypertension. Proc Natl Acad Sci U S A 1994, 91:4072–4076.

    Article  PubMed  CAS  Google Scholar 

  16. Mitchell GF, Block AJ, Hartley LH, et al.: The vasopeptidase inhibitor omapatrilat has a favorable pressure-independent effect on conduit vessel stiffness in patients with congestive heart failure. Circulation 1999, 100(Suppl 1):I-646.

    Google Scholar 

  17. Dendorfer A, Dominiak P: Vasopeptidase inhibition as a new concept in antihypertensive therapy. Kidney Blood Press Res 2000, 23:178–179.

    PubMed  CAS  Google Scholar 

  18. Ruschitzka F, Corti R, Quaschning T, et al.: Vasopeptidase inhibitors-concepts and evidence. Nephrol Dial Transplant 2001, 16:1532–1535.

    Article  PubMed  CAS  Google Scholar 

  19. Wenzel UO, Wolf G, Helmchen U, Stahl RAK: Effects of the vasopeptidase inhibitor omapatrilat in rats with 2-kidney 1- clip (2K1C) Goldblatt hypertension. J Am Soc Nephrol 2000, 11:343A.

    Google Scholar 

  20. Tikkanen T, Tikkanen I, Rockell MD, et al.: Dual inhibition of neutral endopeptidase and angiotensin- converting enzyme in rats with hypertension and diabetes mellitus. Hypertension 1998, 32:778–785.

    PubMed  CAS  Google Scholar 

  21. Trippodo NC, Robl JA, Asaad MM, et al.: Effects of omapatrilat in low, normal, and high renin experimental hypertension. Am J Hypertens 1998, 11:363–372. This paper provides evidence for the efficacy of vasopeptidase inhibition in three different models of hypertension.

    Article  PubMed  CAS  Google Scholar 

  22. Quaschning T, d’Uscio LV, Shaw S, Lüscher TF: Vasopeptidase inhibition exhibits endothelial protection in salt-induced hypertension. Hypertension 2001, 37:1108–1113. This paper demonstrates beneficial effects of vasopeptidase inhibition on endothelial function independent of blood pressure lowering.

    PubMed  CAS  Google Scholar 

  23. Seymour AA, Asaad MM, Abboa-Offei BE, et al.: In vivo pharmacology of dual neutral endopeptidase/angiotensin- converting enzyme inhibitors. J Cardiovasc Pharmacol 1996, 28:672–678.

    Article  PubMed  CAS  Google Scholar 

  24. Trippodo NC, Robl JA, Asaad MM, et al.: Cardiovascular effects of the novel dual inhibitor of neutral endopeptidase and angiotensin-converting enzyme BMS-182657 in experimental hypertension and heart failure. J Pharmacol Exp Ther 1995, 275:745–752.

    PubMed  CAS  Google Scholar 

  25. Fink CA, Carlson JE, McTaggart PA, et al.: Mercaptoacyl dipeptides as orally active dual inhibitors of angiotensin-converting enzyme and neutral endopeptidase. J Med Chem 1996, 39:3158–3168.

    Article  PubMed  CAS  Google Scholar 

  26. Fournie-Zaluski MC, Coric P, Thery V, et al.: Design of orally active dual inhibitors of neutral endopeptidase and angiotensin- converting enzyme with long duration of action. J Med Chem 1996, 39:2594–2608.

    Article  PubMed  CAS  Google Scholar 

  27. Gonzalez W, Beslot F, Laboulandine I, et al.: Inhibition of both angiotensin-converting enzyme and neutral endopeptidase by S21402 (RB105) in rats with experimental myocardial infarction. J Pharmacol Exp Ther 1996, 278:573–581.

    PubMed  CAS  Google Scholar 

  28. Ginoza M, Marques AG, Cesaretti MLR, et al.: Cardiovascular and metabolic effects of the vasopeptidase inhibitor, omapatrilat in spontaneously hypertensive rats. Am J Hypertens 2000, 13:16A.

    Article  Google Scholar 

  29. Love MP, Haynes WG, Gray GA, et al.: Vasodilator effects of endothelin-converting enzyme inhibition and endothelin ETA receptor blockade in chronic heart failure patients treated with ACE inhibitors. Circulation 1996, 94:2131–2137.

    PubMed  CAS  Google Scholar 

  30. Quaschning T, d’Uscio LV, Shaw S, et al.: Chronic vasopeptidase inhibition restores endothelin-converting enzyme activity and normalizes endothelin levels in salt-induced hypertension. Nephrol Dial Transplant 2001, 16:1176–1182.

    Article  PubMed  CAS  Google Scholar 

  31. d’Uscio LV, Quaschning T, Burnett JC, Jr., Lüscher TF: Vasopeptidase inhibition prevents endothelial dysfunction of resistance arteries in salt-sensitive hypertension in comparison with single ACE inhibition. Hypertension 2001, 37:28–33.

    PubMed  CAS  Google Scholar 

  32. Intengan HD, Schiffrin EL: Vasopeptidase inhibition has potent effects on blood pressure and resistance arteries in stroke-prone spontaneously hypertensive rats. Hypertension 2000, 35:1221–1225.

    PubMed  CAS  Google Scholar 

  33. Quaschning T, d’Uscio LV, Shaw S, et al.: Vasopeptidase inhibition restores renovascular endothelial dysfunction and vascular hypertrophy in salt induced hypertension. J Am Soc Nephrol 2001, In press.

  34. Wallis EJ, Ramsay LE, Hettiarachchi J: Combined inhibition of neutral endopeptidase and angiotensin-converting enzyme by sampatrilat in essential hypertension. Clin Pharmacol Ther 1998, 64:439–449.

    Article  PubMed  CAS  Google Scholar 

  35. Asmar R, Fredebohm W, Senftleber I, et al.: Omapatrilat compared with lisinopril in treatment of hypertension as assessed by ambulatory blood pressure monitoring. Am J Hypertens 2000, 13:143A.

    Article  Google Scholar 

  36. Izzo JK, Herman TS, Nash S, et al.: Omapatrilat in elderly hypertensive patients: a placebo-controlled trial. Am J Hypertens 2000, 13:59A-60A.

    Article  Google Scholar 

  37. Campese VM, Ferrario CM, Ruddy MC, et al.: Omapatrilat or lisinopril in salt-sensitive hypertensives. Am J Hypertens 2000, 13:15A.

    Article  Google Scholar 

  38. Guthrie RM, Graff A, Mroczek WJ,et al.: Double-blind withdrawal of omapatrilat after long-term stable administration demonstrates persistence of antihypertensive efficacy. Am J Hypertens 2000, 13:135A.

    Article  Google Scholar 

  39. Ferdinand KC, Sainti RK, Lewin AJ, et al.: Efficacy and safety of omapatrilat with hydrochlorothiazide for the treatment of hypertension in subjects nonresponsive to hydrochlorothiazide alone. Am J Hypertens 2000, 13:138A-139A.

    Article  Google Scholar 

  40. Larochelle P, Smith DHG, Ouellet J-P, et al.: Efficacy and safety of omapatrilat in subjects with isolated systolic hypertension. Am J Hypertens 2000, 13:143A-144A.

    Article  Google Scholar 

  41. Ruilope LM, Palatini P, Grossman E, et al.: Randomized double- blind comparison of omapatrilat with amlodipine in mild-to-moderate hypertension. Am J Hypertens 2000, 13:134A-135A.

    Article  Google Scholar 

  42. Neutel J, Weber M, Shepherd A, et al.: Antihypertensive efficacy of omapatrilat, a vasopeptidase inhibitor, compared with lisinopril. J Hypertens 1999, 17(Suppl 3):S67.

    Google Scholar 

  43. Sica DA, Carretero OA, Gehr TW, Liao W: Omapatrilat pharmacokinetics and its effects on key vascular/renal markers in renal impairment. J Hypertens 1999, 17(Suppl 3):S67.

    Google Scholar 

  44. Levine B, Maesaka JK, Smith MC, Levy EM: The safety and efficacy of omapatrilat in patients with hypertension and renal insufficiency. Am J Hypertens 2000, 13:290A.

    Article  Google Scholar 

  45. Malhotra B, Khan S, Delaney C, et al.: Effects of renal function on pharmacokinetics of omapatrilat. Clin Pharmacol Ther 1999, 65:134.

    Google Scholar 

  46. Kostis J, Weber MA, Alderman MH, et al.: OPERA: desing and rationale for a novel placebo control trial testing the benefits of blood pressure reduction in patients with stage I isolated systolic hypertension. Am J Hypertens 2000, 13:70A-71A.

    Article  Google Scholar 

  47. Chen HH, Lainchbury JG, Matsuda Y, et al.: Endogenous natriuretic peptides participate in renal and humoral actions of acute vasopeptidase inhibition in experimental mild heart failure. Hypertension 2001, 38:187–191.

    PubMed  CAS  Google Scholar 

  48. Burnett JC: Vasopeptidase inhibition. Curr Opin Nephrol Hypertens 2000, 9:465–468.

    Article  PubMed  CAS  Google Scholar 

  49. Burrell LM, Droogh J, Man IV, et al.: Antihypertensive and antihypertrophic effects of omapatrilat in SHR. Am J Hypertens 2000, 13:1110–1116.

    Article  PubMed  CAS  Google Scholar 

  50. Aronoff S, Saini RM, Guthrie RM, Rosenblatt S: Neurohormonal effects of vasopeptidase inhibition with omapatrilat in hypertension. J Am Coll Cardiol 2000, 35:252A.

    Google Scholar 

  51. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD: The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med 1993, 329:1456–1462.

    Article  PubMed  CAS  Google Scholar 

  52. Garcia-Robles R, Villabla F, Gonzalez-Albarran O, et al.: Effects of omapatrilat on blood pressure an the progression of renal failure in an experimental model of thyp II diabetes mellitus. Am J Hypertens 2000, 13:37A.

    Google Scholar 

  53. Nenov VD, Taal MW, Satyal SR, et al.: Omapatrilat affords greater renoprotection than enalapril in rats with established nephropathy ather 5/6 nephrectomy. J Hypertens 2000, 18(Suppl I):112.

    Google Scholar 

  54. Cao Z, Burrell LM, Tikkanen I, et al.: Vasopeptidase inhibition attenuates the progression of renal injury in subtotal nephrectomized rats. Kidney Int 2001, 60:715–721.

    Article  PubMed  CAS  Google Scholar 

  55. Hammett JL, Sica DA, Scicli AG, et al.: Omapatrilat increases key vascular/renal markers regardless of renal function. Clin Pharmacol Ther 1999, 65:131.

    Article  Google Scholar 

  56. Rouleau JL, Pfeffer MA, Stewart DJ, et al.: Comparison of vasopeptidase inhibitor, omapatrilat, and lisinopril on exercise tolerance and morbidity in patients with heartfaiure: IMPRESS randomised trial. Lancet 2000, 356:615–620. The IMPRESS trial is the first mortality and morbidity study on vasopeptidase inhbition in patients with congestive heart failure.

    Article  PubMed  CAS  Google Scholar 

  57. Messerli FH, Nussberger J: Vasopeptidase inhibition and angio-oedema. Lancet 2000, 356:608–609. This editiorial comment discusses the adverse effects of vasopeptidase inhibitors.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quaschning, T., Ruschitzka, F. & Lüscher, T.F. Vasopeptidase inhibition: Effective blood pressure control for vascular protection. Current Science Inc 4, 78–84 (2002). https://doi.org/10.1007/s11906-002-0057-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-002-0057-7

Keywords

Navigation