Skip to main content

Advertisement

Log in

HIV accessory proteins and surviving the host cell

  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Human immunodeficiency virus generates the accessory proteins Nef, viral infectivity factor (Vif), viral protein R, and viral protein U or viral protein X during viral replication in host cells. Although the significance of these accessory proteins is often lost in vitro, they are essential for viral pathogenesis in vivo. Therefore, these proteins have much potential as antiviral targets. Recent data reveal Vif perturbs an ill-defined antiviral pathway in host cells allowing HIV replication. These data highlight a common feature among HIV accessory proteins in manipulating the host to aid viral pathogenesis. Therefore, these new insights into Vif and other HIV accessory proteins are reviewed, emphasizing host cell interactions and new targets for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Hahn BH, Shaw GM, De Cock KM, Sharp PM: AIDS as a zoonosis: scientific and public health implications. Science 2000, 287:607–614.

    Article  PubMed  CAS  Google Scholar 

  2. Anderson JL, Hope TJ: Recent insights into HIV accessory proteins. Curr Infect Dis Rep 2003, 5:439–450.

    PubMed  Google Scholar 

  3. Strebel K, Daugherty D, Clouse K, et al.: The HIV ’A’ (sor) gene product is essential for virus infectivity. Nature 1987, 328:728–730.

    Article  PubMed  CAS  Google Scholar 

  4. Bour S, Strebel K: HIV accessory proteins: multifunctional components of a complex system. Adv Pharmacol 2000, 48:75–119.

    PubMed  CAS  Google Scholar 

  5. von Schwedler U, Song J, Aiken C, Trono D: Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells. J Virol 1993, 67:4945–4955.

    Google Scholar 

  6. Lake J, Carr J, Feng F, et al.: The role of Vif during HIV-1 infection: interaction with novel host cellular factors. J Clin Virol 2003, 26:143–152.

    Article  PubMed  CAS  Google Scholar 

  7. Madani N, Kabat D: An endogenous inhibitor of human immunodeficiency virus in human lymphocytes is overcome by the viral Vif protein. J Virol 1998, 72:10251–10255.

    PubMed  CAS  Google Scholar 

  8. Simon JH, Gaddis NC, Fouchier RA, Malim MH: Evidence for a newly discovered cellular anti-HIV-1 phenotype. Nat Med 1998, 4:1397–1400.

    Article  PubMed  CAS  Google Scholar 

  9. Sheehy AM, Gaddis NC, Choi JD, Malim MH: Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 2002, 418:646–650. This seminal study identifies CEM15/APOBEC3G, which blocks HIV-1 replication in target cells and is overcome by Vif. This discovery of CEM15/APOBEC3G has led to unprecedented advances in understanding how Vif improves HIV infectivity.

    Article  PubMed  CAS  Google Scholar 

  10. Jarmuz A, Chester A, Bayliss J, et al.: An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics 2002, 79:285–296.

    Article  PubMed  CAS  Google Scholar 

  11. Harris RS, Petersen-Mahrt SK, Neuberger MS: RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol Cell 2002, 10:1247–1253.

    Article  PubMed  CAS  Google Scholar 

  12. Lecossier D, Bouchonnet F, Clavel F, Hance AJ: Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science 2003, 300:1112.

    Article  PubMed  CAS  Google Scholar 

  13. Mangeat B, Turelli P, Caron G, et al.: Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 2003, 424:99–103. This comprehensive study reports APOBEC3G induces hypermutation of HIV-1 cDNA in the absence of Vif, characterizes domains in APOBEC3G mediating hypermutation, and shows human APOBEC3G blocks the infectivity of multiple retroviruses aside from HIV-1. This paper suggests APOBEC3G may function to clear infectious nucleic acid entering cells.

    Article  PubMed  CAS  Google Scholar 

  14. Zhang H, Yang B, Pomerantz RJ, et al.: The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 2003, 424:94–98.

    Article  PubMed  CAS  Google Scholar 

  15. Shindo K, Takaori-Kondo A, Kobayashi M, et al.: The enzymatic activity of CEM15/Apobec-3G is essential for the regulation of the infectivity of HIV-1 virion but not a sole determinant of its antiviral activity. J Biol Chem 2003, 278:44412–44416.

    Article  PubMed  CAS  Google Scholar 

  16. Harris RS, Bishop KN, Sheehy AM, et al.: DNA deamination mediates innate immunity to retroviral infection. Cell 2003, 113:803–809.

    Article  PubMed  CAS  Google Scholar 

  17. Mariani R, Chen D, Schrofelbauer B, et al.: Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell 2003, 114:21–31. This paper adds to the current understanding of APOBEC3G function by showing that APOBEC3G likely blocks HIV replication in target cells at a stage after complete cDNA synthesis and before or during integration into the cell genome. Furthermore, simian and rodent APOBEC3Gs are shown to block HIV-1 infection, implying this protein is part of an innate defense mechanism targeting infectious nucleic acid.

    Article  PubMed  CAS  Google Scholar 

  18. Gaddis NC, Chertova E, Sheehy AM, et al.: Comprehensive investigation of the molecular defect in vif-deficient human immunodeficiency virus type 1 virions. J Virol 2003, 77:5810–5820.

    Article  PubMed  CAS  Google Scholar 

  19. Klarmann GJ, Chen X, North TW, Preston BD: Incorporation of uracil into minus strand DNA affects the specificity of plus strand synthesis initiation during lentiviral reverse transcription. J Biol Chem 2003, 278:7902–7909.

    Article  PubMed  CAS  Google Scholar 

  20. Stopak K, de Noronha C, Yonemoto W, Greene WC: HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol Cell 2003, 12:591–601.

    Article  PubMed  CAS  Google Scholar 

  21. Marin M, Rose KM, Kozak SL, Kabat D: HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nat Med 2003, 9:1398–1403.

    Article  PubMed  CAS  Google Scholar 

  22. Sheehy AM, Gaddis NC, Malim MH: The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med 2003, 9:1404–1407.

    Article  PubMed  CAS  Google Scholar 

  23. Kao S, Khan MA, Miyagi E, et al.: The human immunodeficiency virus type 1 Vif protein reduces intracellular expression and inhibits packaging of APOBEC3G (CEM15), a cellular inhibitor of virus infectivity. J Virol 2003, 77:11398–11407.

    Article  PubMed  CAS  Google Scholar 

  24. Yu X, Yu Y, Liu B, et al.: Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 2003, 302:1056–1060. This paper provides the most complete picture to date for how Vif overcomes the antiviral activity of APOBEC3G. It defines Vif as an adaptor, linking APOBEC3G to an E3 ubiquitin ligase complex that polyubiquitinates APOBEC3G for degradation by proteasomes. This rapid degradation impairs APOBEC3G incorporation into virions, thus preventing APOBEC3G from blocking viral infectivity in target cells.

    Article  PubMed  CAS  Google Scholar 

  25. Mehle A, Strack B, Ancuta P, et al.: Vif overcomes the innate antiviral activity of APOBEC3G by promoting its degradation in the ubiquitin-proteasome pathway. J Biol Chem 2003, in press. [Epub ahead of print.]

  26. Conticello SG, Harris RS, Neuberger MS: The Vif protein of HIV triggers degradation of the human antiretroviral DNA deaminase APOBEC3G. Curr Biol 2003, 13:2009–2013.

    Article  PubMed  CAS  Google Scholar 

  27. Strebel K, Klimkait T, Martin M: A novel gene of HIV-1, vpu, and its 16-kilodalton product. Science 1988, 241:1221–1223.

    Article  PubMed  CAS  Google Scholar 

  28. Marassi FM, Ma C, Gratkowski H, et al.: Correlation of the structural and functional domains in the membrane protein Vpu from HIV-1. Proc Natl Acad Sci U S A 1999, 96:14336–14341.

    Article  PubMed  CAS  Google Scholar 

  29. Bour S, Strebel K: The HIV-1 Vpu protein: a multifunctional enhancer of viral particle release. Microbes Infect 2003, 5:1029–1039.

    Article  PubMed  CAS  Google Scholar 

  30. Deora A, Ratner L: Viral protein U (Vpu)-mediated enhancement of human immunodeficiency virus type 1 particle release depends on the rate of cellular proliferation. J Virol 2001, 75:6714–6718.

    Article  PubMed  CAS  Google Scholar 

  31. Varthakavi V, Smith RM, Bour SP, et al.: Viral protein U counteracts a human host-cell restriction that inhibits HIV-1 particle production. Proc Natl Acad Sci U S A 2003, 100:15154–15159. This study uses heterokaryons to demonstrate that HIV-1 Vpu increases virion release by overcoming a restriction in human cells. This is the first description of an inhibitory pathway at virion release in human cells.

    Article  PubMed  CAS  Google Scholar 

  32. Callahan MA, Handley MA, Lee YH, et al.: Functional interaction of human immunodeficiency virus type 1 Vpu and Gag with a novel member of the tetratricopeptide repeat protein family. J Virol 1998, 72:5189–5197.

    PubMed  CAS  Google Scholar 

  33. Bour S, Perrin C, Strebel K: Cell surface CD4 inhibits HIV-1 particle release by interfering with Vpu activity. J Biol Chem 1999, 274:33800–33806.

    Article  PubMed  CAS  Google Scholar 

  34. Besnard-Guerin C, Belaidouni N, Lassot I, et al.: HIV-1 Vpu sequesters beta-transducin repeat-containing protein (betaTrCP) in the cytoplasm and provokes the accumulation of beta-catenin and other SCFbetaTrCP substrates. J Biol Chem 2004, 279:788–795.

    Article  PubMed  CAS  Google Scholar 

  35. Leulier F, Marchal C, Miletich I, et al.: Directed expression of the HIV-1 accessory protein Vpu in Drosophila fat-body cells inhibits Toll-dependent immune responses. EMBO Rep 2003, 4:976–981.

    Article  PubMed  CAS  Google Scholar 

  36. Deacon NJ, Tsykin A, Solomon A, et al.: Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients. Science 1995, 270:988–991.

    Article  PubMed  CAS  Google Scholar 

  37. Kirchhoff F, Greenough TC, Brettler DB, et al.: Absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection. N Engl J Med 1995, 332:228–232.

    Article  PubMed  CAS  Google Scholar 

  38. Greenway AL, Holloway G, McPhee DA: HIV-1 Nef: a critical factor in viral-induced pathogenesis. Adv Pharmacol 2000, 48:299–343.

    Article  PubMed  CAS  Google Scholar 

  39. Forshey BM, Aiken C: Disassembly of human immunodeficiency virus type 1 cores in vitro reveals association of nef with the subviral ribonucleoprotein complex. J Virol 2003, 77:4409–4414.

    Article  PubMed  CAS  Google Scholar 

  40. Cullen BR: HIV-1 auxiliary proteins: making connections in a dying cell. Cell 1998, 93:685–692.

    Article  PubMed  CAS  Google Scholar 

  41. Janvier K, Craig H, Hitchin D, et al.: HIV-1 Nef stabilizes the association of adaptor protein complexes with membranes. J Biol Chem 2003, 278:8725–8732.

    Article  PubMed  CAS  Google Scholar 

  42. Arora VK, Fredericksen BL, Garcia JV: Nef: agent of cell subversion. Microbes Infect 2002, 4:189–199.

    Article  PubMed  CAS  Google Scholar 

  43. Geyer M, Yu H, Mandic R, et al.: Subunit H of the V-ATPase binds to the medium chain of adaptor protein complex 2 and connects Nef to the endocytic machinery. J Biol Chem 2002, 277:28521–28529.

    Article  PubMed  CAS  Google Scholar 

  44. Lundquist CA, Tobiume M, Zhou J, et al.: Nef-mediated downregulation of CD4 enhances human immunodeficiency virus type 1 replication in primary T lymphocytes. J Virol 2002, 76:4625–4633.

    Article  PubMed  CAS  Google Scholar 

  45. Stoddart CA, Geleziunas R, Ferrell S, et al.: Human immunodeficiency virus type 1 Nef-mediated downregulation of CD4 correlates with Nef enhancement of viral pathogenesis. J Virol 2003, 77:2124–2133.

    Article  PubMed  CAS  Google Scholar 

  46. Williams M, Roeth JF, Kasper MR, et al.: Direct binding of human immunodeficiency virus type 1 Nef to the major histocompatibility complex class I (MHC-I) cytoplasmic tail disrupts MHC-I trafficking. J Virol 2002, 76:12173–12184.

    Article  PubMed  CAS  Google Scholar 

  47. Blagoveshchenskaya AD, Thomas L, Feliciangeli SF, et al.: HIV-1 Nef downregulates MHC-I by a PACS-1- and PI3K-regulated ARF6 endocytic pathway. Cell 2002, 111:853–866.

    Article  PubMed  CAS  Google Scholar 

  48. Kasper MR, Collins KL: Nef-mediated disruption of HLA-A2 transport to the cell surface in T cells. J Virol 2003, 77:3041–3049.

    Article  PubMed  CAS  Google Scholar 

  49. Tomiyama H, Akari H, Adachi A, Takiguchi M: Different effects of Nef-mediated HLA class I down-regulation on human immunodeficiency virus type 1-specific CD8(+) T-cell cytolytic activity and cytokine production. J Virol 2002, 76:7535–7543.

    Article  PubMed  CAS  Google Scholar 

  50. Yang OO, Nguyen PT, Kalams SA, et al.: Nef-mediated resistance of human immunodeficiency virus type 1 to antiviral cytotoxic T lymphocytes. J Virol 2002, 76:1626–1631.

    Article  PubMed  CAS  Google Scholar 

  51. Renkema GH, Saksela K: Interactions of HIV-1 NEF with cellular signal transducing proteins. Front Biosci 2000, 5:D268-D283.

    Article  PubMed  CAS  Google Scholar 

  52. Choe EY, Schoenberger ES, Groopman JE, Park IW: HIV Nef inhibits T-cell migration. J Biol Chem 2002, 277:46079–46084.

    Article  PubMed  CAS  Google Scholar 

  53. Swingler S, Brichacek B, Jacque JM, et al.: HIV-1 Nef intersects the macrophage CD40L signalling pathway to promote resting-cell infection. Nature 2003, 424:213–219. This study demonstrates that Nef-expressing macrophages can stimulate resting T cells to become susceptible to HIV-1 infection through B cells, enhancing our understanding of cellular reservoirs of HIV infection.

    Article  PubMed  CAS  Google Scholar 

  54. Varin A, Manna SK, Quivy V, et al.: Exogenous Nef protein activates NF-kappa B, AP-1, and c-Jun N-terminal kinase and stimulates HIV transcription in promonocytic cells: role in AIDS pathogenesis. J Biol Chem 2003, 278:2219–2227.

    Article  PubMed  CAS  Google Scholar 

  55. Miller MD, Warmerdam MT, Page KA, et al.: Expression of the human immunodeficiency virus type 1 (HIV-1) nef gene during HIV-1 production increases progeny particle infectivity independently of gp160 or viral entry. J Virol 1995, 69:579–584.

    PubMed  CAS  Google Scholar 

  56. Chazal N, Singer G, Aiken C, et al.: Human immunodeficiency virus type 1 particles pseudotyped with envelope proteins that fuse at low pH no longer require Nef for optimal infectivity. J Virol 2001, 75:4014–4018.

    Article  PubMed  CAS  Google Scholar 

  57. Dorfman T, Popova E, Pizzato M, Gottlinger HG: Nef enhances human immunodeficiency virus type 1 infectivity in the absence of matrix. J Virol 2002, 76:6857–6862.

    Article  PubMed  Google Scholar 

  58. Papkalla A, Munch J, Otto C, Kirchhoff F: Nef enhances human immunodeficiency virus type 1 infectivity and replication independently of viral coreceptor tropism. J Virol 2002, 76:8455–8459.

    Article  PubMed  CAS  Google Scholar 

  59. Tobiume M, Lineberger JE, Lundquist CA, et al.: Nef does not affect the efficiency of human immunodeficiency virus type 1 fusion with target cells. J Virol 2003, 77:10645–10650.

    Article  PubMed  CAS  Google Scholar 

  60. Campbell EM, Nunez R, Hope TJ: Disruption of the actin cytoskeleton can complement the ability of Nef to enhance HIV-1 infectivity. J Virol 2004, in press.

  61. Aiken C, Trono D: Nef stimulates human immunodeficiency virus type 1 proviral DNA synthesis. J Virol 1995, 69:5048–5056.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, J.L., Hope, T.J. HIV accessory proteins and surviving the host cell. Curr HIV/AIDS Rep 1, 47–53 (2004). https://doi.org/10.1007/s11904-004-0007-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-004-0007-x

Keywords

Navigation