Skip to main content
Log in

Current Status of Cell-Based Therapy for Heart Failure

  • Management of Heart Failure (TE Meyer, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

In the last two decades, morbidity and mortality of patients with chronic heart failure could be further reduced by improved pharmacological and cardiac device therapies. However, despite these advances, there is a substantial unmet need for novel therapies, ideally specifically addressing repair and regeneration of the damaged or lost myocardium and its vasculature, given the limited endogenous potential for renewal of cardiomyocytes in adults. In this respect, cardiac cell-based therapies have gained substantial attention and have entered clinical feasibility and safety studies a decade ago. Different cell-types have been used, including bone marrow–derived mononuclear cells, bone marrow–derived mesenchymal stem cells, mobilized CD34+ cells, and more recently cardiac-derived c-kit+ stem cells and cardiosphere-derived cells. Some of these studies have suggested a potential of cell-based therapies to reduce cardiac scar size and to improve cardiac function in patients with ischemic cardiomyopathy. While first clinical trials examining the impact of cardiac cell–based therapy on clinical outcome have now been initiated, improved understanding of underlying mechanisms of action of cell-based therapies may lead to strategies for optimization of the cardiac repair potential of the applied cells. In experimental studies, direct in vivo reprogramming of cardiac fibroblasts towards cardiomyocytes, and microRNA-based promotion of cardiomyocyte proliferation and cardiac repair have recently been reported that may represent novel therapeutic approaches for cardiac regeneration that would not need cell-administration but rather directly stimulate endogenous cardiac regeneration. This review will focus mainly on recently completed clinical trials (within the last 2 years) investigating cardiac cell-based therapies and the current status of experimental studies for cardiac cell-based repair and regeneration with a potential for later translation into clinical studies in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. Science. 2002;298(5601):2188–90. doi:10.1126/science.1077857.

    Article  PubMed  CAS  Google Scholar 

  2. Jopling C, Sleep E, Raya M, Marti M, Raya A, Izpisua Belmonte JC. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature. 2010;464(7288):606–9. doi:10.1038/nature08899.

    Article  PubMed  CAS  Google Scholar 

  3. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98–102. doi:10.1126/science.1164680.

    Article  PubMed  CAS  Google Scholar 

  4. Segers VF, Lee RT. Stem-cell therapy for cardiac disease. Nature. 2008;451(7181):937–42. doi:10.1038/nature06800.

    Article  PubMed  CAS  Google Scholar 

  5. Laflamme MA, Murry CE. Heart regeneration. Nature. 2011;473(7347):326–35. doi:10.1038/nature10147.

    Article  PubMed  CAS  Google Scholar 

  6. Tongers J, Losordo DW, Landmesser U. Stem and progenitor cell-based therapy in ischaemic heart disease: promise, uncertainties, and challenges. Eur Heart J. 2011;32(10):1197–206. doi:10.1093/eurheartj/ehr018.

    Article  PubMed  CAS  Google Scholar 

  7. Gepstein L. Derivation and potential applications of human embryonic stem cells. Circ Res. 2002;91(10):866–76.

    Article  PubMed  CAS  Google Scholar 

  8. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol. 2007;25(9):1015–24. doi:10.1038/nbt1327.

    Article  PubMed  CAS  Google Scholar 

  9. Li Z, Wu JC, Sheikh AY, Kraft D, Cao F, Xie X, et al. Differentiation, survival, and function of embryonic stem cell derived endothelial cells for ischemic heart disease. Circulation. 2007;116(11 Suppl):I46–54. doi:10.1161/CIRCULATIONAHA.106.680561.

    PubMed  Google Scholar 

  10. Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, et al. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature. 2000;408(6808):92–6. doi:10.1038/35040568.

    Article  PubMed  CAS  Google Scholar 

  11. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72. doi:10.1016/j.cell.2007.11.019.

    Article  PubMed  CAS  Google Scholar 

  12. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. doi:10.1016/j.cell.2006.07.024.

    Article  PubMed  CAS  Google Scholar 

  13. Maherali N, Hochedlinger K. Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell. 2008;3(6):595–605. doi:10.1016/j.stem.2008.11.008.

    Article  PubMed  CAS  Google Scholar 

  14. Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell. 2011;8(4):376–88. doi:10.1016/j.stem.2011.03.001.

    Article  PubMed  CAS  Google Scholar 

  15. Robinton DA, Daley GQ. The promise of induced pluripotent stem cells in research and therapy. Nature. 2012;481(7381):295–305. doi:10.1038/nature10761.

    Article  PubMed  CAS  Google Scholar 

  16. Templin C, Zweigerdt R, Schwanke K, Olmer R, Ghadri JR, Emmert MY, et al. Transplantation and tracking of human-induced pluripotent stem cells in a pig model of myocardial infarction: assessment of cell survival, engraftment, and distribution by hybrid single photon emission computed tomography/computed tomography of sodium iodide symporter transgene expression. Circulation. 2012;126(4):430–9. doi:10.1161/CIRCULATIONAHA.111.087684.

    Article  PubMed  CAS  Google Scholar 

  17. Zhao T, Zhang ZN, Rong Z, Xu Y. Immunogenicity of induced pluripotent stem cells. Nature. 2011;474(7350):212–5. doi:10.1038/nature10135.

    Article  PubMed  CAS  Google Scholar 

  18. • Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature. 2012;485(7400):593–8. doi:10.1038/nature11044. This experimental study shows that systemic delivery of cardiac transcription factors can directly reprogram resident cardiac fibroblasts into cardiomyocyte–like cells.

    Article  PubMed  CAS  Google Scholar 

  19. Jayawardena TM, Egemnazarov B, Finch EA, Zhang L, Payne JA, Pandya K, et al. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res. 2012;110(11):1465–73. doi:10.1161/CIRCRESAHA.112.269035.

    Article  PubMed  CAS  Google Scholar 

  20. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114(6):763–76.

    Article  PubMed  CAS  Google Scholar 

  21. Urbanek K, Cesselli D, Rota M, Nascimbene A, De Angelis A, Hosoda T, et al. Stem cell niches in the adult mouse heart. Proc Natl Acad Sci U S A. 2006;103(24):9226–31. doi:10.1073/pnas.0600635103.

    Article  PubMed  CAS  Google Scholar 

  22. Laugwitz KL, Moretti A, Lam J, Gruber P, Chen Y, Woodard S, et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature. 2005;433(7026):647–53. doi:10.1038/nature03215.

    Article  PubMed  CAS  Google Scholar 

  23. Laugwitz KL, Moretti A, Caron L, Nakano A, Chien KR. Islet1 cardiovascular progenitors: a single source for heart lineages? Development. 2008;135(2):193–205. doi:10.1242/dev.001883.

    Article  PubMed  CAS  Google Scholar 

  24. Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y, et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A. 2003;100(21):12313–8. doi:10.1073/pnas.2132126100.

    Article  PubMed  CAS  Google Scholar 

  25. Matsuura K, Honda A, Nagai T, Fukushima N, Iwanaga K, Tokunaga M, et al. Transplantation of cardiac progenitor cells ameliorates cardiac dysfunction after myocardial infarction in mice. J Clin Invest. 2009;119(8):2204–17. doi:10.1172/JCI37456.

    PubMed  CAS  Google Scholar 

  26. Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation. 2007;115(7):896–908. doi:10.1161/CIRCULATIONAHA.106.655209.

    Article  PubMed  CAS  Google Scholar 

  27. Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res. 2004;95(9):911–21. doi:10.1161/01.RES.0000147315.71699.51.

    Article  PubMed  CAS  Google Scholar 

  28. Li TS, Cheng K, Malliaras K, Smith RR, Zhang Y, Sun B, et al. Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cells. J Am Coll Cardiol. 2012;59(10):942–53. doi:10.1016/j.jacc.2011.11.029.

    Article  PubMed  Google Scholar 

  29. Johnston PV, Sasano T, Mills K, Evers R, Lee ST, Smith RR, et al. Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation. 2009;120(12):1075–83. doi:10.1161/CIRCULATIONAHA.108.816058. 7 p following 83.

    Article  PubMed  CAS  Google Scholar 

  30. Chimenti I, Smith RR, Li TS, Gerstenblith G, Messina E, Giacomello A, et al. Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ Res. 2010;106(5):971–80. doi:10.1161/CIRCRESAHA.109.210682.

    Article  PubMed  CAS  Google Scholar 

  31. Welt FG, Gallegos R, Connell J, Kajstura J, D'Amario D, Kwong RY, et al. Effect of cardiac stem cells on left ventricular remodeling in a canine model of chronic myocardial infarction. Circ Heart Fail. 2012. doi:10.1161/CIRCHEARTFAILURE.112.972273.

  32. •• Bolli R, Chugh AR, D'Amario D, Loughran JH, Stoddard MF, Ikram S, et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet. 2011;378(9806):1847–57. doi:10.1016/S0140-6736(11)61590-0. This is the first clinical study using c-kit+ cardiac stem cells in patients with ischemic cardiomyopathy.

    Article  PubMed  Google Scholar 

  33. Chugh AR, Beache GM, Loughran JH, Mewton N, Elmore JB, Kajstura J, et al. Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance. Circulation. 2012;126(11 Suppl 1):S54–64. doi:10.1161/CIRCULATIONAHA.112.092627.

    Article  PubMed  CAS  Google Scholar 

  34. •• Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet. 2012;379(9819):895–904. doi:10.1016/S0140-6736(12)60195-0. This is the first clinical trial using cardiosphere-derived cells (CDCs) in patients with ischemic cardiomyopathy.

    Article  PubMed  Google Scholar 

  35. Malliaras K, Li TS, Luthringer D, Terrovitis J, Cheng K, Chakravarty T, et al. Safety and efficacy of allogeneic cell therapy in infarcted rats transplanted with mismatched cardiosphere-derived cells. Circulation. 2012;125(1):100–12. doi:10.1161/CIRCULATIONAHA.111.042598.

    Article  PubMed  CAS  Google Scholar 

  36. Jakob P, Doerries C, Briand S, Mocharla P, Krankel N, Besler C, et al. Loss of AngiomiR-126 and 130a in angiogenic early outgrowth cells from patients with chronic heart failure: role for impaired in vivo neovascularization and cardiac repair capacity. Circulation. 2012. doi:10.1161/CIRCULATIONAHA.112.093906.

  37. Dimmeler S, Leri A. Aging and disease as modifiers of efficacy of cell therapy. Circ Res. 2008;102(11):1319–30. doi:10.1161/CIRCRESAHA.108.175943.

    Article  PubMed  CAS  Google Scholar 

  38. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410(6829):701–5. doi:10.1038/35070587.

    Article  PubMed  CAS  Google Scholar 

  39. Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature. 2004;428(6983):664–8. doi:10.1038/nature02446.

    Article  PubMed  CAS  Google Scholar 

  40. Nygren JM, Jovinge S, Breitbach M, Sawen P, Roll W, Hescheler J, et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med. 2004;10(5):494–501. doi:10.1038/nm1040.

    Article  PubMed  CAS  Google Scholar 

  41. • Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res. 2008;103(11):1204–19. doi:10.1161/CIRCRESAHA.108.176826. This comprehensive review describes and discusses one of the most important mechanism - namely paracrine signaling - by which adult stem cells exert their effects.

    Article  PubMed  CAS  Google Scholar 

  42. Burchfield JS, Dimmeler S. Role of paracrine factors in stem and progenitor cell mediated cardiac repair and tissue fibrosis. Fibrogenesis Tissue Repair. 2008;1(1):4. doi:10.1186/1755-1536-1-4.

    Article  PubMed  CAS  Google Scholar 

  43. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med. 2001;7(4):430–6. doi:10.1038/86498.

    Article  PubMed  CAS  Google Scholar 

  44. Urbich C, Aicher A, Heeschen C, Dernbach E, Hofmann WK, Zeiher AM, et al. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J Mol Cell Cardiol. 2005;39(5):733–42. doi:10.1016/j.yjmcc.2005.07.003.

    Article  PubMed  CAS  Google Scholar 

  45. Yoon CH, Koyanagi M, Iekushi K, Seeger F, Urbich C, Zeiher AM, et al. Mechanism of improved cardiac function after bone marrow mononuclear cell therapy: role of cardiovascular lineage commitment. Circulation. 2010;121(18):2001–11. doi:10.1161/CIRCULATIONAHA.109.909291.

    Article  PubMed  Google Scholar 

  46. Loffredo FS, Steinhauser ML, Gannon J, Lee RT. Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell Stem Cell. 2011;8(4):389–98. doi:10.1016/j.stem.2011.02.002.

    Article  PubMed  CAS  Google Scholar 

  47. Assmus B, Schachinger V, Teupe C, Britten M, Lehmann R, Dobert N, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation. 2002;106(24):3009–17.

    Article  PubMed  Google Scholar 

  48. Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet. 2004;364(9429):141–8. doi:10.1016/S0140-6736(04)16626-9.

    Article  PubMed  Google Scholar 

  49. Janssens S, Dubois C, Bogaert J, Theunissen K, Deroose C, Desmet W, et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet. 2006;367(9505):113–21. doi:10.1016/S0140-6736(05)67861-0.

    Article  PubMed  Google Scholar 

  50. Lunde K, Solheim S, Aakhus S, Arnesen H, Abdelnoor M, Egeland T, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med. 2006;355(12):1199–209. doi:10.1056/NEJMoa055706.

    Article  PubMed  CAS  Google Scholar 

  51. •• Schachinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Holschermann H, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med. 2006;355(12):1210–21. doi:10.1056/NEJMoa060186. This landmark study demonstrates improvement of cardiac function after BM-MNCs transplantation in patients with acute myocardial infarction.

    Article  PubMed  CAS  Google Scholar 

  52. Abdel-Latif A, Bolli R, Tleyjeh IM, Montori VM, Perin EC, Hornung CA, et al. Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med. 2007;167(10):989–97. doi:10.1001/archinte.167.10.989.

    Article  PubMed  Google Scholar 

  53. Zimmet H, Porapakkham P, Sata Y, Haas SJ, Itescu S, Forbes A, et al. Short- and long-term outcomes of intracoronary and endogenously mobilized bone marrow stem cells in the treatment of ST-segment elevation myocardial infarction: a meta-analysis of randomized control trials. Eur J Heart Fail. 2012;14(1):91–105. doi:10.1093/eurjhf/hfr148.

    Article  PubMed  Google Scholar 

  54. Lipinski MJ, Biondi-Zoccai GG, Abbate A, Khianey R, Sheiban I, Bartunek J, et al. Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: a collaborative systematic review and meta-analysis of controlled clinical trials. J Am Coll Cardiol. 2007;50(18):1761–7. doi:10.1016/j.jacc.2007.07.041.

    Article  PubMed  Google Scholar 

  55. Martin-Rendon E, Brunskill SJ, Hyde CJ, Stanworth SJ, Mathur A, Watt SM. Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur Heart J. 2008;29(15):1807–18. doi:10.1093/eurheartj/ehn220.

    Article  PubMed  CAS  Google Scholar 

  56. Clifford DM, Fisher SA, Brunskill SJ, Doree C, Mathur A, Clarke MJ, et al. Long-term effects of autologous bone marrow stem cell treatment in acute myocardial infarction: factors that may influence outcomes. PLoS One. 2012;7(5):e37373. doi:10.1371/journal.pone.0037373.

    Article  PubMed  CAS  Google Scholar 

  57. Perin EC, Willerson JT, Pepine CJ, Henry TD, Ellis SG, Zhao DX, et al. Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial. Jama. 2012;307(16):1717–26. doi:10.1001/jama.2012.418.

    Article  PubMed  CAS  Google Scholar 

  58. • Traverse JH, Henry TD, Pepine CJ, Willerson JT, Zhao DX, Ellis SG et al. effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial. Jama. 2012:1–10. doi:10.1001/jama.2012.28726.

  59. Wang X, Takagawa J, Lam VC, Haddad DJ, Tobler DL, Mok PY, et al. Donor myocardial infarction impairs the therapeutic potential of bone marrow cells by an interleukin-1-mediated inflammatory response. Sci Transl Med. 2011;3(100):100ra90. doi:10.1126/scitranslmed.3002814.

    Article  PubMed  CAS  Google Scholar 

  60. • Traverse JH, Henry TD, Ellis SG, Pepine CJ, Willerson JT, Zhao DX, et al. Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial. Jama. 2011;306(19):2110–9. doi:10.1001/jama.2011.1670.

    Article  PubMed  CAS  Google Scholar 

  61. • Surder D. Intracoronary infusion of BM-MNC early or late after AMI – 4 months results of the SWISS-AMI trial. Scientific Sessions of the AHA – late braking trials. 2012. References 58, 60, and 61 are all well-designed clinical trials that investigated BM-MNCs administration at different time points in patients with acute myocardial infarction and left ventricular dysfunction.

  62. Seeger FH, Tonn T, Krzossok N, Zeiher AM, Dimmeler S. Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction. Eur Heart J. 2007;28(6):766–72. doi:10.1093/eurheartj/ehl509.

    Article  PubMed  Google Scholar 

  63. Seeger FH, Rasper T, Fischer A, Muhly-Reinholz M, Hergenreider E, Leistner DM, et al. Heparin disrupts the CXCR4/SDF-1 axis and impairs the functional capacity of bone marrow-derived mononuclear cells used for cardiovascular repair. Circ Res. 2012;111(7):854–62. doi:10.1161/CIRCRESAHA.112.265678.

    Article  PubMed  CAS  Google Scholar 

  64. Aktas M, Radke TF, Strauer BE, Wernet P, Kogler G. Separation of adult bone marrow mononuclear cells using the automated closed separation system Sepax. Cytotherapy. 2008;10(2):203–11. doi:10.1080/14653240701851324.

    Article  PubMed  CAS  Google Scholar 

  65. Marban E, Malliaras K. Mixed results for bone marrow-derived cell therapy for ischemic heart disease. Jama. 2012:1–2. doi:10.1001/jama.2012.64751.

  66. Fleissner F, Jazbutyte V, Fiedler J, Gupta SK, Yin X, Xu Q, et al. Short communication: asymmetric dimethylarginine impairs angiogenic progenitor cell function in patients with coronary artery disease through a microRNA-21-dependent mechanism. Circ Res. 2010;107(1):138–43. doi:10.1161/CIRCRESAHA.110.216770.

    Article  PubMed  CAS  Google Scholar 

  67. Heeschen C, Lehmann R, Honold J, Assmus B, Aicher A, Walter DH, et al. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation. 2004;109(13):1615–22. doi:10.1161/01.CIR.0000124476.32871.E3.

    Article  PubMed  Google Scholar 

  68. Penn MS, Ellis S, Gandhi S, Greenbaum A, Hodes Z, Mendelsohn FO, et al. Adventitial delivery of an allogeneic bone marrow-derived adherent stem cell in acute myocardial infarction: phase I clinical study. Circ Res. 2012;110(2):304–11. doi:10.1161/CIRCRESAHA.111.253427.

    Article  PubMed  CAS  Google Scholar 

  69. Wang J, Zhang S, Rabinovich B, Bidaut L, Soghomonyan S, Alauddin MM, et al. Human CD34+ cells in experimental myocardial infarction: long-term survival, sustained functional improvement, and mechanism of action. Circ Res. 2010;106(12):1904–11. doi:10.1161/CIRCRESAHA.110.221762.

    Article  PubMed  CAS  Google Scholar 

  70. • Losordo DW, Henry TD, Davidson C, Sup Lee J, Costa MA, Bass T, et al. Intramyocardial, autologous CD34+ cell therapy for refractory angina. Circ Res. 2011;109(4):428–36. doi:10.1161/CIRCRESAHA.111.245993. This clinical study demonstrates a reduction of angina pectoris frequency in patients with Canadian Cardiovascular Society (CCS) class III–IV refractory angina after intramyocardial delivery of CD34+ cells and emphasizes that relief of symptoms may emerge as an important target of cell-based therapies.

    Article  PubMed  CAS  Google Scholar 

  71. Assmus B, Rolf A, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, et al. Clinical outcome 2 years after intracoronary administration of bone marrow-derived progenitor cells in acute myocardial infarction. Circ Heart Fail. 2010;3(1):89–96. doi:10.1161/CIRCHEARTFAILURE.108.843243.

    Article  PubMed  Google Scholar 

  72. • Jeevanantham V, Butler M, Saad A, Abdel-Latif A, Zuba-Surma EK, Dawn B. Adult bone marrow cell therapy improves survival and induces long-term improvement in cardiac parameters: a systematic review and meta-analysis. Circulation. 2012;126(5):551–68. doi:10.1161/CIRCULATIONAHA.111.086074. This up-to-date meta-analysis highlights beneficial short- and long-term effects after BM-MNCs administration in 2625 patients with ischemic heart disease.

    Article  PubMed  Google Scholar 

  73. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8(9):726–36. doi:10.1038/nri2395.

    Article  PubMed  CAS  Google Scholar 

  74. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002;105(1):93–8.

    Article  PubMed  Google Scholar 

  75. Gnecchi M, He H, Liang OD, Melo LG, Morello F, Mu H, et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med. 2005;11(4):367–8. doi:10.1038/nm0405-367.

    Article  PubMed  CAS  Google Scholar 

  76. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98(5):1076–84. doi:10.1002/jcb.20886.

    Article  PubMed  CAS  Google Scholar 

  77. Williams AR, Hare JM. Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ Res. 2011;109(8):923–40. doi:10.1161/CIRCRESAHA.111.243147.

    Article  PubMed  CAS  Google Scholar 

  78. Suzuki G, Iyer V, Lee TC, Canty Jr JM. Autologous mesenchymal stem cells mobilize cKit+ and CD133+ bone marrow progenitor cells and improve regional function in hibernating myocardium. Circ Res. 2011;109(9):1044–54. doi:10.1161/CIRCRESAHA.111.245969.

    Article  PubMed  CAS  Google Scholar 

  79. Hatzistergos KE, Quevedo H, Oskouei BN, Hu Q, Feigenbaum GS, Margitich IS, et al. Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ Res. 2010;107(7):913–22. doi:10.1161/CIRCRESAHA.110.222703.

    Article  PubMed  CAS  Google Scholar 

  80. Griffin MD, Ryan AE, Alagesan S, Lohan P, Treacy O, Ritter T. Anti-donor immune responses elicited by allogeneic mesenchymal stem cells: what have we learned so far? Immunol Cell Biol. 2012. doi:10.1038/icb.2012.67.

  81. Quevedo HC, Hatzistergos KE, Oskouei BN, Feigenbaum GS, Rodriguez JE, Valdes D, et al. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc Natl Acad Sci U S A. 2009;106(33):14022–7. doi:10.1073/pnas.0903201106.

    Article  PubMed  Google Scholar 

  82. Chen SL, Fang WW, Qian J, Ye F, Liu YH, Shan SJ, et al. Improvement of cardiac function after transplantation of autologous bone marrow mesenchymal stem cells in patients with acute myocardial infarction. Chin Med J (Engl). 2004;117(10):1443–8.

    Google Scholar 

  83. Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK, Schulman SP, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009;54(24):2277–86. doi:10.1016/j.jacc.2009.06.055.

    Article  PubMed  CAS  Google Scholar 

  84. •• Hare JM, Fishman JE, Gerstenblith G, Difede Velazquez DL, Zambrano JP, Suncion VY et al. Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. Jama. 2012:1–11. doi:10.1001/jama.2012.25321. This clinical trial investigated transendocardial delivery of allogeneic and autologous MSCs head-to-head in patients with ischemic cardiomyopathy (ICM).

  85. Williams AR, Trachtenberg B, Velazquez DL, McNiece I, Altman P, Rouy D, et al. Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling. Circ Res. 2011;108(7):792–6. doi:10.1161/CIRCRESAHA.111.242610.

    Article  PubMed  CAS  Google Scholar 

  86. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74(5):1124–36.

    Article  PubMed  CAS  Google Scholar 

  87. Haider H, Ashraf M. Preconditioning and stem cell survival. J Cardiovasc Transl Res. 2010;3(2):89–102. doi:10.1007/s12265-009-9161-2.

    Article  PubMed  Google Scholar 

  88. Aicher A, Heeschen C, Mildner-Rihm C, Urbich C, Ihling C, Technau-Ihling K, et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med. 2003;9(11):1370–6. doi:10.1038/nm948.

    Article  PubMed  CAS  Google Scholar 

  89. Landmesser U, Engberding N, Bahlmann FH, Schaefer A, Wiencke A, Heineke A, et al. Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function, and survival after experimental myocardial infarction requires endothelial nitric oxide synthase. Circulation. 2004;110(14):1933–9. doi:10.1161/01.CIR.0000143232.67642.7A.

    Article  PubMed  CAS  Google Scholar 

  90. Bauersachs J, Bouloumie A, Fraccarollo D, Hu K, Busse R, Ertl G. Endothelial dysfunction in chronic myocardial infarction despite increased vascular endothelial nitric oxide synthase and soluble guanylate cyclase expression: role of enhanced vascular superoxide production. Circulation. 1999;100(3):292–8.

    Article  PubMed  CAS  Google Scholar 

  91. Jujo K, Ii M, Sekiguchi H, Klyachko E, Misener S, Tanaka T, et al. CXCR4 Antagonist AMD3100 promotes cardiac functional recovery after ischemia-reperfusion injury via eNOS-dependent mechanism. Circulation. 2012. doi:10.1161/CIRCULATIONAHA.112.099242.

  92. Taljaard M, Ward MR, Kutryk MJ, Courtman DW, Camack NJ, Goodman SG, et al. Rationale and design of enhanced angiogenic cell therapy in acute myocardial infarction (ENACT-AMI): the first randomized placebo-controlled trial of enhanced progenitor cell therapy for acute myocardial infarction. Am Heart J. 2010;159(3):354–60. doi:10.1016/j.ahj.2009.12.021.

    Article  PubMed  CAS  Google Scholar 

  93. Strauer BE, Steinhoff G. 10 years of intracoronary and intramyocardial bone marrow stem cell therapy of the heart: from the methodological origin to clinical practice. J Am Coll Cardiol. 2011;58(11):1095–104. doi:10.1016/j.jacc.2011.06.016.

    Article  PubMed  Google Scholar 

  94. Takehara N, Tsutsumi Y, Tateishi K, Ogata T, Tanaka H, Ueyama T, et al. Controlled delivery of basic fibroblast growth factor promotes human cardiosphere-derived cell engraftment to enhance cardiac repair for chronic myocardial infarction. J Am Coll Cardiol. 2008;52(23):1858–65. doi:10.1016/j.jacc.2008.06.052.

    Article  PubMed  CAS  Google Scholar 

  95. Behfar A, Yamada S, Crespo-Diaz R, Nesbitt JJ, Rowe LA, Perez-Terzic C, et al. Guided cardiopoiesis enhances therapeutic benefit of bone marrow human mesenchymal stem cells in chronic myocardial infarction. J Am Coll Cardiol. 2010;56(9):721–34. doi:10.1016/j.jacc.2010.03.066.

    Article  PubMed  CAS  Google Scholar 

  96. Bartunek J, Wijns W, Dolatabadi D, Vanderheyden M, Dens J, Ostojic M, et al. C-cure multicenter trial: lineage specified bone marrow derived cardiopoietic mesenchymal stem cells for treatment of ischemic cardiomyopathy. J Am Coll Cardiol. 2011;57:E200.

    Article  Google Scholar 

  97. Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature. 2011;469(7330):336–42. doi:10.1038/nature09783.

    Article  PubMed  CAS  Google Scholar 

  98. Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature. 2012;492(7429):376–81. doi:10.1038/nature11739.

    Article  PubMed  CAS  Google Scholar 

  99. Jakob P, Landmesser U. Role of microRNAs in stem/progenitor cells and cardiovascular repair. Cardiovasc Res. 2012;93(4):614–22. doi:10.1093/cvr/cvr311.

    Article  PubMed  CAS  Google Scholar 

  100. Xu Q, Seeger FH, Castillo J, Iekushi K, Boon RA, Farcas R, et al. Micro-RNA-34a contributes to the impaired function of bone marrow-derived mononuclear cells from patients with cardiovascular disease. J Am Coll Cardiol. 2012;59(23):2107–17. doi:10.1016/j.jacc.2012.02.033.

    Article  PubMed  CAS  Google Scholar 

  101. Hu S, Huang M, Nguyen PK, Gong Y, Li Z, Jia F, et al. Novel microRNA prosurvival cocktail for improving engraftment and function of cardiac progenitor cell transplantation. Circulation. 2011;124(11 Suppl):S27–34. doi:10.1161/CIRCULATIONAHA.111.017954.

    Article  PubMed  Google Scholar 

  102. Williams AR, Hatzistergos KE, Addicott B, McCall F, Carvalho D, Suncion V, et al. Enhanced effect of human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and restore cardiac function after myocardial infarction. Circulation. 2012. doi:10.1161/CIRCULATIONAHA.112.131110 [Epub ahead of print].

Download references

Acknowledgments

This work was supported by Swiss National Research Foundation grants (310030–122339, 33CM30-124112/1), the German Research Foundation (DFG-LA-1432/3-1), the Swiss Heart Foundation, Uniscientia Foundation, the Zurich Center for Integrative Human Physiology and the Clinical Research Focus Program of the University of Zurich.

Conflict of Interest

Philipp Jakob declares he has no conflict of interest.

Ulf Landmesser declares he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Landmesser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakob, P., Landmesser, U. Current Status of Cell-Based Therapy for Heart Failure. Curr Heart Fail Rep 10, 165–176 (2013). https://doi.org/10.1007/s11897-013-0134-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-013-0134-z

Keywords

Navigation