Skip to main content

Advertisement

Log in

Treating heart failure with cardiac contractility modulation electrical signals

  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Major advances have been made over the past two decades in the pharmacologic treatment of chronic heart failure (HF). Angiotensin-converting enzyme inhibitors, β-blockers, and aldosterone antagonists have had a substantial impact on reducing mortality and morbidity in patients with HF and low left ventricular ejection fraction. These treatments delayed the progression toward advanced intractable HF but did not arrest progressive worsening of the disease. Patients on optimal medical therapy continued to deteriorate, albeit at a much slower pace, ultimately requiring further intervention. This gave rise to a host of device-based therapies that emerged in recent years to address this unmet need. Device therapies such as cardiac resynchronization, the CorCap™ cardiac support device (Acorn Cardiovascular, Inc., St. Paul, MN), and the OPTIMIZER™ System (Impulse Dynamics USA, Inc., Orangeburg, NY) are a few examples. This review addresses the progress made to date in the development and implementation of cardiac contractility modulation (CCM) as a device-based therapy for the treatment of patients with advanced HF. Treatment of patients with HF using CCM electrical signals is at present an investigational form of therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. The SOLVD Investigators: Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. The SOLVD Investigators. N Engl J Med 1991, 325:293–302.

    Article  Google Scholar 

  2. Hjalmarson A, Goldstein S, Fagerberg B, et al.: Effect of controlled-release metoprolol on total mortality, hospitalizations, and well-being in patients with heart failure: the metoprolol CR/XL Randomized Intervention Trial in congestive heart failure (MERIT-HF). MERIT-HF Study Group. JAMA 2000, 283:1295–1302.

    Article  PubMed  CAS  Google Scholar 

  3. Pitt B, Zannad F, Remmee WJ, et al.: The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 1999, 341:709–717.

    Article  PubMed  CAS  Google Scholar 

  4. Abraham WT, Fisher WG, Smith AL, et al.: Cardiac resynchronization in chronic heart failure. N Engl J Med 2002, 346:1845–1853.

    Article  PubMed  Google Scholar 

  5. Saavedra WF, Paolocci N, Mishima T, et al.: Reverse remodeling and enhanced adrenergic reserve from passive external support in experimental dilated heart failure. J Am Coll Cardiol 2002, 39:2069–2076.

    Article  PubMed  CAS  Google Scholar 

  6. Pappone C, Rosanio S, Burkhoff D, et al.: Cardiac contractility modulation by electric currents applied during the refractory period in patients with heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 2002, 90:1307–1313.

    Article  PubMed  Google Scholar 

  7. Morita H, Suzuki G, Haddad W, et al.: Cardiac contractility modulation with non-excitatory electric signals improves left ventricular function in dogs with chronic heart failure. J Card Failure 2003, 9:69–75. This article describes the hemodynamic and ventriculographic results of acute delivery of CCM electrical signals to the LV myocardium of dogs with experimentally-induced HF. In this study, leads attached to the epicardial surface of the heart were used to deliver the CCM signals.

    Article  Google Scholar 

  8. Morita H, Suzuki G, Haddad, et al.: Long-term effects of non-excitatory cardiac contractility modulation electric signals on the progression of heart failure in dogs. Eur J Heart Fail 2004, 6:145–150. This article describes the hemodynamic and ventriculographic results of the first chronic delivery of CCM electrical signals to the LV myocardium of dogs with experimentally-induced HF. In this study, a lead positioned in the anterior cardiac vein, via the coronary sinus, was used to deliver the CCM signals.

    Article  PubMed  Google Scholar 

  9. Auricchio A, Stellbrink C, Sack S, et al.: Long-term clinical effect of hemodynamically optimized cardiac resynchronization therapy in patients with heart failure and ventricular conduction delay. J Am Coll Cardiol 2002, 39:2026–2033.

    Article  PubMed  Google Scholar 

  10. St John Sutton MG, Plappert T, Abraham WT, et al.: Effect of cardiac resynchronization therapy on left ventricular size and function in chronic heart failure. Circulation 2003, 107:1985–1990.

    Article  PubMed  Google Scholar 

  11. Kass DA: Ventricular resynchronization: pathophysiology and identification of responders. Rev Cardiovasc Med 2003, 4(Suppl 2):S3-S13.

    PubMed  Google Scholar 

  12. Yu CM, Yang H, Lau CP, et al.: Regional left ventricle mechanical asynchrony in patients with heart disease and normal QRS duration: implication for biventricular pacing therapy. Pacing Clin Electrophysiol 2003, 26:562–570.

    Article  PubMed  Google Scholar 

  13. Morris-Thurgood JA, Turner MS, Nightingale AK, et al.: Pacing in heart failure: improved ventricular interaction in diastole rather than systolic re-synchronization. Europace 2000, 2:271–275.

    Article  PubMed  CAS  Google Scholar 

  14. Sandhu R, Bahler RC: Prevalence of QRS prolongation in a community hospital cohort of patients with heart failure and its relation to left ventricular systolic dysfunction. Am J Cardiol 2004, 93:244–246.

    Article  PubMed  Google Scholar 

  15. Shenkman HJ, Pampati V, Khandelwal AK, et al.: Congestive heart failure and QRS duration: establishing prognosis study. Chest 2002, 122:528–534.

    Article  PubMed  Google Scholar 

  16. Burkhoff D, Shemer I, Felzen B, et al.: Electric currents applied during the refractory period can modulate cardiac contractility in vitro and in vivo. Heart Fail Rev 2001, 6:27–34.

    Article  PubMed  CAS  Google Scholar 

  17. Mohri S, Shimizu J, Mika Y, et al.: Electric currents applied during the refractory period increased peak intracellular calcium and contractility in ferret hearts. Am J Physiol 2003, 284:H1119-H1123.

    CAS  Google Scholar 

  18. Mishra S, Gupta RC, Rastogi S, Haddad W: Short-term therapy with non-excitatory cardiac contractility modulation electric signals increases phosphorylation of phospholamban in left ventricular myocardium of dogs with chronic heart failure [abstract]. Circulation 2004, 110:III-604.

    Google Scholar 

  19. Rastogi S, Mishra S, Habib O, et al.: Therapy with nonexcitatory cardiac contractility modulation electric signals reverses the maladaptive fetal gene program in LV myocardium of dogs with heart failure [abstract]. Circulation 2003, 108:IV-444.

    Google Scholar 

  20. Hasenfuss G, Reinecke H, Studer R, et al.: Relation between myocardial function and expression of sarcoplasmic reticulum Ca2+-ATPase in failing and nonfailing human myocardium. Circ Res 1994, 75:434–442.

    PubMed  CAS  Google Scholar 

  21. Frank KF, Bolck B, Brixius K, et al.: Modulation of SERCA: implications for the failing human heart. Basic Res Cardiol 2002, 97(Suppl 1):I72-I78.

    PubMed  Google Scholar 

  22. Mishra S, Gupta RC, Tiwari N, et al.: Molecular mechanisms of reduced sarcoplasmic reticulum Ca(2+) uptake in human failing left ventricular myocardium. J Heart Lung Transplant 2002, 21:366–373.

    Article  PubMed  Google Scholar 

  23. O’Rourke B, Kass DA, Tomaselli GF, et al.: Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, I: experimental studies. Circ Res 1999, 84:562–570.

    PubMed  CAS  Google Scholar 

  24. Haghighi K, Gregory KN, Kranias EG: Sarcoplasmic reticulum Ca-ATPase-phospholamban interactions and dilated cardiomyopathy. Biochem Biophys Res Commun 2004, 322:1214–1222.

    Article  PubMed  CAS  Google Scholar 

  25. Frank K, Kranias EG: Phospholamban and cardiac contractility. Ann Med 2000, 32:572–578.

    PubMed  CAS  Google Scholar 

  26. Schmidt U, Hajjar RJ, Kim CS, et al.: Human heart failure: cAMP stimulation of SR Ca(2+)-ATPase activity and phosphorylation level of phospholamban. Am J Physiol 1999, 277:H474-H480.

    PubMed  CAS  Google Scholar 

  27. Schwinger RH, Munch G, Bolck B, et al.: Reduced Ca(2+)-sensitivity of SERCA 2a in failing human myocardium due to reduced serin-16 phospholamban phosphorylation. J Mol Cell Cardiol 1999, 31:479–491.

    Article  PubMed  Google Scholar 

  28. Studer R, Reinecke H, Bilger J, et al.: Gene expression of the cardiac Na+-Ca2+ exchanger in end-stage human heart failure. Circ Res 1994, 75:443–453.

    PubMed  CAS  Google Scholar 

  29. Gupta RC, Mishra M, Rastogi S, et al.: Non-excitatory cardiac contractility modulation electric signals normalize phosphorylation and expression of the sodium-calcium exchanger in left ventricular myocardium of dogs with heart failure [abstract]. J Am Coll Cardiol 2005, 45:151A.

    Google Scholar 

  30. Gupta RC, Mishra S, Imai M, et al.: Cardiac contractility modulation with non-excitatory electric signals normalizes expression of the transcriptional factor GATA-4 in dogs with chronic heart failure [abstract]. Heart Rhythm 2005, 2:S138.

    Article  Google Scholar 

  31. Sabbah HN, Imai M, Haddad W, et al.: Non-excitatory cardiac contractility modulation electric signals improve left ventricular function in dogs with heart failure without increasing myocardial oxygen consumption [abstract]. Heart Rhythm 2004, 1:S181.

    Google Scholar 

  32. Sabbah HN, Imai M, Rastogi S, Sharma N, et al.: Chronic therapy with non-excitatory cardiac modulation signals improves left ventricular function, reduces myocardial oxygen consumption and increases myocardial efficiency [abstract]. Heart Rhythm 2005, 2:S44.

    Article  Google Scholar 

  33. Stix G, Borggrefe M, Wolpert C, et al.: Chronic electrical stimulation during the absolute refractory period of the myocardium improves severe heart failure. Eur Heart J 2004, 25:650–655. This is the first report of the use of CCM electrical signals in patients with advanced HF.

    Article  PubMed  Google Scholar 

  34. Pappone C, Augello G, Rosanio S, et al.: First human chronic experience with cardiac contractility modulation by nonexcitatory electrical currents for treating systolic heart failure: mid-term safety and efficacy results from a multicenter study. J Cardiovasc Electrophysiol 2004, 15:418–427. This article documents the first study that CCM electrical signals were used to assess both safety and efficacy trends in patients with HF.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hani N. Sabbah PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabbah, H.N., Gupta, R.C., Rastogi, S. et al. Treating heart failure with cardiac contractility modulation electrical signals. Curr Heart Fail Rep 3, 21–24 (2006). https://doi.org/10.1007/s11897-006-0027-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-006-0027-5

Keywords

Navigation