Skip to main content

Advertisement

Log in

Small Fiber Neuropathy: Is Skin Biopsy the Holy Grail?

  • Microvascular Complications—Neuropathy (D Ziegler, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Small fiber neuropathy (SFN) is characterized by negative sensory symptoms (thermal and pinprick hypoesthesia) reflecting peripheral deafferentation and positive sensory symptoms and signs (burning pain, allodynia, hyperalgesia), which often dominate the clinical picture. In patients with pure SFN, clinical and neurophysiologic investigation do not show involvement of large myelinated nerve fiber making the diagnosis of SFN challenging in clinical practice. Over the last 15 years, skin biopsy has emerged as a novel tool that readily permits morphometric and qualitative evaluation of somatic and autonomic small nerve fibers. This technique has overcome the limitations of routine neurophysiologic tests to detect the damage of small nerve fibers. The recent availability of normative reference values allowed clinicians to reliably define the diagnosis of SFN in individual patients. This paper reviews usefulness and limitations of skin biopsy and the relationship between degeneration and regeneration of small nerve fibers in patients with diabetes and metabolic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance, •• Of major importance

  1. •• Tesfaye S, Boulton AJ, Dyck PJ, et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 2010;33:2285–2293. This consensus paper revised definition and grading of diabetic neuropathy, and provides the first definition of small fiber neuropathy for clinical practice and research.

  2. Sumner CJ, Sheth S, Griffin JW, Cornblath DR, Polydefkis M. The spectrum of neuropathy in diabetes and impaired glucose tolerance. Neurology. 2003;60:108–11.

    Article  PubMed  CAS  Google Scholar 

  3. • Devigili G, Tugnoli V, Penza P, et al. The diagnostic criteria for small fibre neuropathy: from symptoms to neuropathology. Brain 2008;131:1912–1925. A work focused on small fiber neuropathy, providing comparison between clinical examination, quantitative sensory testing, nerve conduction study, laser evoked potentials, and skin biopsy findings. It showed that skin biopsy has higher sensitivity an specificity for the diagnosis and is useful for the assessment of the natural course of neuropathy.

  4. Vlckova-Moravcova E, Bednarik J, Belobradkova J, Sommer C. Small-fibre involvement in diabetic patients with neuropathic foot pain. Diabet Med. 2008;25:692–9.

    Article  PubMed  CAS  Google Scholar 

  5. Hughes RA, Umapathi T, Gray IA, et al. A controlled investigation of the cause of chronic idiopathic axonal polyneuropathy. Brain. 2004;127:1723–30.

    Article  PubMed  CAS  Google Scholar 

  6. Nebuchennykh M, Loseth S, Jorde R, Mellgren SI. Idiopathic polyneuropathy and impaired glucose metabolism in a Norwegian patient series. Eur J Neurol. 2008;15:810–6.

    Article  PubMed  CAS  Google Scholar 

  7. Martina IS, van Koningsveld R, Schmitz PI, van der Meche FG, van Doorn PA. Measuring vibration threshold with a graduated tuning fork in normal aging and in patients with polyneuropathy. European Inflammatory Neuropathy Cause and Treatment (INCAT) group. J Neurol Neurosurg Psychiatry. 1998;65:743–7.

    Article  PubMed  CAS  Google Scholar 

  8. Novak V, Freimer ML, Kissel JT, et al. Autonomic impairment in painful neuropathy. Neurology. 2001;56:861–8.

    Article  PubMed  CAS  Google Scholar 

  9. Bakkers M, Merkies ISJ, Lauria G, et al. Intraepidermal nerve fiber density and its application in sarcoidosis. Neurology. 2009;73:1142–8.

    Article  PubMed  CAS  Google Scholar 

  10. •• Faber CG, Hoeijmakers JG, Ahn HS, et al. Gain of function Na(V) 1.7 mutations in idiopathic small fiber neuropathy. Ann Neurol 2012;71:26–39. This paper demonstrated for the first time that gain-of-function mutations in SCN9A encoding for Nav1.7 subunit of sodium channel cause small fiber neuropathy. These findings contributed to identify the new syndrome of channellopathy-associated small fiber neuropathy.

  11. Feldman EL, Stevens MJ, Thomas PK, Brown MB, Canal N, Greene DA. A practical two-step quantitative clinical and electrophysiological assessment for the diagnosis and staging of diabetic neuropathy. Diabetes Care. 1994;17:1281–9.

    Article  PubMed  CAS  Google Scholar 

  12. Kennedy WR, Nolano M, Wendelschafer-Crabb G, Johnson TL, Tamura E. A skin blister method to study epidermal nerves in peripheral nerve disease. Muscle Nerve. 1999;22:360–71.

    Article  PubMed  CAS  Google Scholar 

  13. •• Lauria G, Hsieh ST, Johansson O, et al. European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the Use of Skin Biopsy in the Diagnosis of Small Fiber Neuropathy. J Periph Nerv Syst 2010;15:79–92. This paper reports the revised guidelines for the diagnostic use of skin biopsy in the diagnosis of small fiber neuropathy. Information on safety, diagnostic yield, and correlation with clinical picture, quantitative sensory testing and non-convetional neurophysiological studies are provided.

  14. Nolano M, Provitera V, Crisci C, et al. Quantification of myelinated endings and mechanoreceptors in human digital skin. Ann Neurol. 2003;54:197–205.

    Article  PubMed  Google Scholar 

  15. Lauria G, Borgna M, Morbin M, et al. Tubule and neurofilament immunoreactivity in human hairy skin: markers for intraepidermal nerve fibers. Muscle Nerve. 2004;30:310–6.

    Article  PubMed  Google Scholar 

  16. Lauria G, Morbin M, Lombardi R, et al. Expression of capsaicin receptor immunoreactivity in human peripheral nervous system and in painful neuropathies. J Peripher Nerv Syst. 2006;11:262–71.

    Article  PubMed  CAS  Google Scholar 

  17. Li Y, Hsieh ST, Chien HF, Zhang X, McArthur JC, Griffin JW. Sensory and motor denervation influence epidermal thickness in rat foot glabrous skin. Exp Neurol. 1997;147:452–62.

    Article  PubMed  CAS  Google Scholar 

  18. Peier AM, Reeve AJ, Andersson DA, et al. A heat-sensitive TRP channel expressed in keratinocytes. Science. 2002;296:2046–9.

    Article  PubMed  CAS  Google Scholar 

  19. Fernandes ES, Fernandes MA, Keeble JE. The functions of TRPA1 and TRPV1: moving away from sensory nerves. Br J Pharmacol 2012.

  20. Denda M, Tsutsumi M. Roles of transient receptor potential proteins (TRPs) in epidermal keratinocytes. Adv Exp Med Biol. 2011;704:847–60.

    Article  PubMed  Google Scholar 

  21. •• Lumpkin EA, Caterina MJ. Mechanisms of sensory transduction in the skin. Nature 2007;445:858–865. A comprehensive overview on the relationship between small nerve fibers and resident cells of the skin in the mechanisms of thermal and nociceptive sensation transduction to the brain. This complex nerve-cell network demonstrates that non-neuronal structures play a critical role in sensory perception and possible neuropathic pain.

  22. Vlckova-Moravcova E, Bednarik J, Dusek L, Toyka KV, Sommer C. Diagnostic validity of epidermal nerve fiber densities in painful sensory neuropathies. Muscle Nerve. 2008;37:50–60.

    Article  PubMed  Google Scholar 

  23. Lauria G, Cazzato D, Porretta-Serapiglia C, et al. Morphometry of dermal nerve fibers in human skin. Neurology. 2011;77:242–9.

    Article  PubMed  CAS  Google Scholar 

  24. Nolano M, Provitera V, Perretti A, et al. Ross syndrome: a rare or a misknown disorder of thermoregulation? A skin innervation study on 12 subjects. Brain. 2006;129:2119–31.

    Article  PubMed  Google Scholar 

  25. • Gibbons CH, Illigens BM, Wang N, Freeman R. Quantification of sudomotor innervation: a comparison of three methods. Muscle Nerve 2010;42:112–119. This paper provided evidence for reliable quantification of sweat gland innervation density and correlation with diabetic neuropathy clinical scores.

  26. • Nolano M, Provitera V, Caporaso G, Stancanelli A, Vitale DF, L. S. Quantification of pilomotor nerves. A new tool to evaluate autonomic involvement in diabetes. Neurology 2010;75:1089–1097. This paper provides the first-ever reliable quantification of pilomotor muscle innervation, showing its decrease in diabetic neuropathy patients and correlation with sweating impairment.

  27. • Lauria G, Bakkers M, Schmitz C, et al. Intraepidermal nerve fiber density at the distal leg: a worldwide normative reference study. J Peripher Nerv Syst 2010;15:202–207. A collaborative work among nine skin biopsy laboratory from Europe, USA, and Asia in 550 healthy subjects that provided age and gender-adjusted normative reference values for IENF density at the distal leg for clinical use.

  28. Lauria G, Holland N, Hauer PE, Cornblath DR, Griffin JW, McArthur JC. Epidermal innervation: changes with aging, topographic location, and in sensory neuropathy. J Neurol Sci. 1999;164:172–8.

    Article  PubMed  CAS  Google Scholar 

  29. Kennedy WR, Wendelschafer-Crabb G, Johnson T. Quantitation of epidermal nerves in diabetic neuropathy. Neurology. 1996;47:1042–8.

    Article  PubMed  CAS  Google Scholar 

  30. Holland NR, Crawford TO, Hauer P, Cornblath DR, Griffin JW, McArthur JC. Small-fiber sensory neuropathies: clinical course and neuropathology of idiopathic cases. Ann Neurol 1998;44.

  31. Smith AG, Ramachandran P, Tripp S, Singleton JR. Epidermal nerve innervation in impaired glucose tolerance and diabetes-associated neuropathy. Neurology. 2001;57:1701–4.

    Article  PubMed  CAS  Google Scholar 

  32. Smith AG, Russell J, Feldman EL, et al. Lifestyle intervention for pre-diabetic neuropathy. Diabetes Care. 2006;29:1294–9.

    Article  PubMed  Google Scholar 

  33. Umapathi T, Tan WL, Loke SC, Soon PC, Tavintharan S, Chan YH. Intraepidermal nerve fiber density as a marker of early diabetic neuropathy. Muscle Nerve. 2007;35:591–8.

    Article  PubMed  CAS  Google Scholar 

  34. Pittenger GL, Mehrabyan A, Simmons K, et al. Small fiber neuropathy is associated with the metabolic syndrome. Metab Syndr Relat Disord. 2005;3:113–21.

    Article  PubMed  CAS  Google Scholar 

  35. Loseth S, Stalberg E, Jorde R, Mellgren SI. Early diabetic neuropathy: thermal thresholds and intraepidermal nerve fibre density in patients with normal nerve conduction studies. J Neurol. 2008;255:1197–202.

    Article  PubMed  Google Scholar 

  36. Pittenger GL, Ray M, Burcus NI, McNulty P, Basta B, Vinik AI. Intraepidermal nerve fibers are indicators of small-fiber neuropathy in both diabetic and nondiabetic patients. Diabetes Care. 2004;27:1974–9.

    Article  PubMed  Google Scholar 

  37. Quattrini C, Tavakoli M, Jeziorska M, et al. Surrogate markers of small fiber damage in human diabetic neuropathy. Diabetes. 2007;56:2148–54.

    Article  PubMed  CAS  Google Scholar 

  38. Zhou L, Li J, Ontaneda D, Sperling J. Metabolic syndrome in small fiber sensory neuropathy. J Clin Neuromuscul Dis. 2012;12:235–43.

    Article  CAS  Google Scholar 

  39. Smith AG, Howard JR, Kroll R, et al. The reliability of skin biopsy with measurement of intraepidermal nerve fiber density. J Neurol Sci. 2005;228:65–9.

    Article  PubMed  Google Scholar 

  40. Koskinen M, Hietaharju A, Kylaniemi M, et al. A quantitative method for the assessment of intraepidermal nerve fibers in small-fiber neuropathy. J Neurol. 2005;252:789–94.

    Article  PubMed  Google Scholar 

  41. Shun CT, Chang YC, Wu HP, et al. Skin denervation in type 2 diabetes: correlations with diabetic duration and functional impairments. Brain. 2004;127:1593–605.

    Article  PubMed  Google Scholar 

  42. Lauria G, Morbin M, Lombardi R, et al. Axonal swellings predict the degeneration of epidermal nerve fibers in painful neuropathies. Neurology. 2003;61:631–6.

    Article  PubMed  CAS  Google Scholar 

  43. Herrmann DN, McDermott MP, Henderson D, Chen L, Akowuah K, Schifitto G. Epidermal nerve fiber density, axonal swellings and QST as predictors of HIV distal sensory neuropathy. Muscle Nerve. 2004;29:420–7.

    Article  PubMed  Google Scholar 

  44. Singleton JR, Smith AG, Bromberg MB. Increased prevalence of impaired glucose tolerance in patients with painful sensory neuropathy. Diabetes Care. 2001;24:1448–53.

    Article  PubMed  CAS  Google Scholar 

  45. Luo KR, Chao CC, Chen YT, et al. Quantitation of sudomotor innervation in skin biopsies of patients with diabetic neuropathy. J Neuropathol Exp Neurol. 2012;70:930–8.

    Article  Google Scholar 

  46. Luo KR, Chao CC, Hsieh PC, Lue JH, Hsieh ST. Effect of glycemic control on sudomotor denervation in type 2 diabetes. Diabetes Care. 2012;35:612–6.

    Article  PubMed  Google Scholar 

  47. Shy ME, Frohman EM, So YT, et al. Quantitative sensory testing: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2003;60:898–904.

    Article  PubMed  CAS  Google Scholar 

  48. Freeman R, Chase KP, Risk MR. Quantitative sensory testing cannot differentiate simulated sensory loss from sensory neuropathy. Neurology. 2003;60:465–70.

    Article  PubMed  Google Scholar 

  49. • Hansson P, Backonja M, Bouhassira D. Usefulness and limitations of quantitative sensory testing: clinical and research application in neuropathic pain states. Pain 2007;129:256–259. A recent and comprehensive review on methods and application of quantitative sensory testing in clinical practice and research.

  50. Maier C, Baron R, Tolle TR, et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes. Pain. 2010;150:439–50.

    Article  PubMed  CAS  Google Scholar 

  51. Sorensen L, Molyneaux L, Yue DK. The relationship among pain, sensory loss, and small nerve fibers in diabetes. Diabetes Care. 2006;29:883–7.

    Article  PubMed  Google Scholar 

  52. Nebuchennykh M, Loseth S, Lindal S, Mellgren SI. The value of skin biopsy with recording of intraepidermal nerve fiber density and quantitative sensory testing in the assessment of small fiber involvement in patients with different causes of polyneuropathy. J Neurol. 2009;256:1067–75.

    Article  PubMed  Google Scholar 

  53. Sahin O, Yildiz S, Yildiz N. Cutaneous silent period in fibromyalgia. Neurol Res. 2011;33:339–43.

    Article  PubMed  Google Scholar 

  54. Torebjork E. Human microneurography and intraneural microstimulation in the study of neuropathic pain. Muscle Nerve. 1993;16:1063–5.

    Article  PubMed  CAS  Google Scholar 

  55. Campero M, Baumann TK, Bostock H, Ochoa JL. Human cutaneous C fibres activated by cooling, heating and menthol. J Physiol. 2009;587:5633–52.

    Article  PubMed  CAS  Google Scholar 

  56. Campero M, Serra J, Bostock H, Ochoa JL. Slowly conducting afferents activated by innocuous low temperature in human skin. J Physiol. 2001;535:855–65.

    Article  PubMed  CAS  Google Scholar 

  57. Campero M, Serra J, Ochoa JL. C-polymodal nociceptors activated by noxious low temperature in human skin. J Physiol. 1996;497(Pt 2):565–72.

    PubMed  CAS  Google Scholar 

  58. Campero M, Serra J, Ochoa JL. Peripheral projections of sensory fascicles in the human superficial radial nerve. Brain. 2005;128:892–5.

    Article  PubMed  CAS  Google Scholar 

  59. Ochoa JL, Campero M, Serra J, Bostock H. Hyperexcitable polymodal and insensitive nociceptors in painful human neuropathy. Muscle Nerve. 2005;32:459–72.

    Article  PubMed  Google Scholar 

  60. Treede RD, Lorenz J, Baumgartner U. Clinical usefulness of laser-evoked potentials. Neurophysiol Clin. 2003;33:303–14.

    Article  PubMed  Google Scholar 

  61. Creac’h C, Convers P, Robert F, Antoine JC, Camdessanche JP. Small fiber sensory neuropathies: contribution of laser evoked potentials. Rev Neurol (Paris). 2011;167:40–5.

    Article  Google Scholar 

  62. Chiang HY, Chen CT, Chien HF, Hsieh ST. Skin denervation, neuropathology, and neuropathic pain in a laser-induced focal neuropathy. Neurobiol Dis. 2005;18:40–53.

    Article  PubMed  Google Scholar 

  63. • Casanova-Molla J, Grau-Junyent JM, Morales M, Valls-Sole J. On the relationship between nociceptive evoked potentials and intraepidermal nerve fiber density in painful sensory polyneuropathies. Pain 2011;152:410–418. This study investigated the correlation between skin biopsy and both laser and contact heat-evoked potentials in painful neuropathy, including 52 patients with small fiber neuropathy. Results showed a correlation between low IENF density and impaired latency and amplitude of evoked potentials.

  64. Granovsky Y, Matre D, Sokolik A, Lorenz J, Casey KL. Thermoreceptive innervation of human glabrous and hairy skin: a contact heat evoked potential analysis. Pain. 2005;115:238–47.

    Article  PubMed  Google Scholar 

  65. Wong MC, Chung JW. Feasibility of contact heat evoked potentials for detection of diabetic neuropathy. Muscle Nerve. 2011;44:902–6.

    Article  PubMed  Google Scholar 

  66. Chao CC, Hsieh SC, Tseng MT, Chang YC, Hsieh ST. Patterns of contact heat evoked potentials (CHEP) in neuropathy with skin denervation: correlation of CHEP amplitude with intraepidermal nerve fiber density. Clin Neurophysiol. 2008;119:653–61.

    Article  PubMed  Google Scholar 

  67. Chao CC, Tseng MT, Lin YJ, et al. Pathophysiology of neuropathic pain in type 2 diabetes: skin denervation and contact heat-evoked potentials. Diabetes Care. 2010;33:2654–9.

    Article  PubMed  Google Scholar 

  68. Atherton DD, Facer P, Roberts KM, et al. Use of the novel Contact Heat Evoked Potential Stimulator (CHEPS) for the assessment of small fibre neuropathy: correlations with skin flare responses and intra-epidermal nerve fibre counts. BMC Neurol. 2007;7:21.

    Article  PubMed  Google Scholar 

  69. Lauria G, Devigili G. Skin biopsy as a diagnostic tool in peripheral neuropathy. Nat Clin Pract Neurol. 2007;3:546–57.

    Article  PubMed  Google Scholar 

  70. Lauria G, McArthur JC, Hauer PE, Griffin JW, Cornblath DR. Neuropathological alterations in diabetic truncal neuropathy: evaluation by skin biopsy. J Neurol Neurosurg Psychiatry. 1998;65:762–6.

    Article  PubMed  CAS  Google Scholar 

  71. Nolano M, Simone DA, Wendelschafer-Crabb G, Johnson T, Hazen E, Kennedy WR. Topical capsaicin in humans: parallel loss of epidermal nerve fibers and pain sensation. Pain. 1999;81:135–45.

    Article  PubMed  CAS  Google Scholar 

  72. Polydefkis M, Hauer P, Sheth S, Sirdofsky M, Griffin JW, McArthur JC. The time course of epidermal nerve fibre regeneration: studies in normal controls and in people with diabetes, with and without neuropathy. Brain. 2004;127:1606–15.

    Article  PubMed  Google Scholar 

  73. Kennedy JM, Zochodne DW. Experimental diabetic neuropathy with spontaneous recovery: is there irreparable damage? Diabetes. 2005;54:830–7.

    Article  PubMed  CAS  Google Scholar 

  74. Dyck PJ, Dyck PJ, Klein CJ, Weigand SD. Does impaired glucose metabolism cause polyneuropathy? Review of previous studies and design of a prospective controlled population-based study. Muscle Nerve. 2007;36:536–41.

    Article  PubMed  CAS  Google Scholar 

  75. Toth C, Brussee V, Zochodne DW. Remote neurotrophic support of epidermal nerve fibres in experimental diabetes. Diabetologia. 2006;49:1081–8.

    Article  PubMed  CAS  Google Scholar 

  76. Bianchi R, Buyukakilli B, Brines M, et al. Erythropoietin both protects from and reverses experimental diabetic neuropathy. Proc Natl Acad Sci U S A. 2004;101:823–8.

    Article  PubMed  CAS  Google Scholar 

  77. Rajan B, Polydefkis M, Hauer P, Griffin JW, McArthur JC. Epidermal reinnervation after intracutaneous axotomy in man. J Comp Neurol. 2003;457:24–36.

    Article  PubMed  Google Scholar 

  78. •• Ebenezer GJ, O'Donnell R, Hauer P, Cimino NP, McArthur JC, Polydefkis M. Impaired neurovascular repair in subjects with diabetes following experimental intracutaneous axotomy. Brain 2011;134:1853–1863. An elegant work in patients with diabetic neuropathy that investigated the ability of nerves, Schwann cells, and vessels to repair after chemical denervation and excision of the skin. Results demonstrated that diabetes affected the neurovascular regeneration, suggesting a role in the development of diabetic neuropathy.

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Lauria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lauria, G., Lombardi, R. Small Fiber Neuropathy: Is Skin Biopsy the Holy Grail?. Curr Diab Rep 12, 384–392 (2012). https://doi.org/10.1007/s11892-012-0280-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-012-0280-9

Keywords

Navigation