Skip to main content

Advertisement

Log in

Determining Genetic Risk Factors for Pediatric Type 2 Diabetes

  • Pediatric Type 2 Diabetes (M Freemark, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

The prevalence of type 2 diabetes (T2D) is increasing significantly in the pediatric population. A strong family history of the disease suggests the involvement of genetic factors for diabetes development, but defining the molecular genetics of T2D in children is difficult due to a low number of subjects and the lack of robust diagnostic criteria. Thus, genetic studies of T2D have been carried out almost exclusively in adults. In this review, the genetics of T2D is summarized and options for discovering the missing heritability explored. The review concludes with a discussion of future research that will be required for determining genetic risk factors for pediatric T2D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rosenbloom AL, Young RS, Joe JR, Winter WE. Emerging epidemic of type 2 diabetes in youth. Diabetes Care. 1999;22(2):345–54.

    Article  PubMed  CAS  Google Scholar 

  2. Cali AM, Caprio S. Prediabetes and type 2 diabetes in youth: an emerging epidemic disease? Curr Opin Endocrinol Diabetes Obes. 2008;15(2):123–7.

    Article  PubMed  CAS  Google Scholar 

  3. • Wilmot EG, Davies MJ, Yates T, et al. Type 2 diabetes in younger adults: the emerging UK epidemic. Postgrad Med J. 2010;86(1022):711–8. This is an excellent review of pediatric T2D describing the epidemiology of T2D in younger adults, as well as the risk factors involved, clinical presentation, diagnostic difficulties, complications, comorbidities, and management.

    Article  PubMed  Google Scholar 

  4. Berry D, Urban A, Grey M. Understanding the development and prevention of type 2 diabetes in youth (part 1). J Pediatr Health Care. 2006;20(1):3–10.

    Article  PubMed  Google Scholar 

  5. American Diabetes Association. Type 2 diabetes in children and adolescents. Pediatrics. 2000;105(3):671–80.

    Article  Google Scholar 

  6. •• Barker A, Sharp SJ, Timpson NJ, et al. Association of genetic loci with glucose levels in childhood and adolescence: a meta-analysis of over 6,000 children. Diabetes 2011;60(6):1805–12. This is the first study to demonstrate that the majority of novel fasting glucose loci identified in GWAS of adults are detectable in childhood and with effect sizes comparable to those reported in replication studies of adults. The study overcomes the problem of false-negative replication results by meta-analyzing a total of six studies including more than 6000 children and adolescents, constituting the largest study of fasting glucose-associated loci in children and adolescents to date.

    Article  PubMed  CAS  Google Scholar 

  7. • Dabelea D, Dolan LM, D’Agostino R Jr, et al. Association testing of TCF7L2 polymorphisms with type 2 diabetes in multi-ethnic youth. Diabetologia 2011;54(3):535–9. This is the first report on TCF7L2 variation in a sample of well-characterized youth with T2D and healthy controls in two racial/ethnic groups.

    Article  PubMed  CAS  Google Scholar 

  8. Raitakari OT, Ronnemaa T, Huupponen R, et al. Variation of the transcription factor 7-like 2 (TCF7L2) gene predicts impaired fasting glucose in healthy young adults: the Cardiovascular Risk in Young Finns Study. Diab Care. 2007;30:2299–301.

    Article  CAS  Google Scholar 

  9. Sladek R, Rocheleau G, Rung J, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445:881–5.

    Article  PubMed  CAS  Google Scholar 

  10. Wellcome Trust Case Control Consortium. Genome-wide association Study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–78.

    Article  Google Scholar 

  11. Saxena R, Voight BF, Lyssenko V, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316:1331–6.

    Article  PubMed  CAS  Google Scholar 

  12. Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316:1341–5.

    Article  PubMed  CAS  Google Scholar 

  13. Steinthorsdottir V, Thorleifsson G, Reynisdottir I, et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet. 2007;39(6):770–5.

    Article  PubMed  CAS  Google Scholar 

  14. Gudmundsson J, Sulem P, Steinthorsdottir V, et al. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet. 2007;39:977–83.

    Article  PubMed  CAS  Google Scholar 

  15. Zeggini E, Scott LJ, Saxena R, et al. Metaanalysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet. 2008;40(5):638–45.

    Article  PubMed  CAS  Google Scholar 

  16. Yasuda K, Miyake K, Horikawa Y, et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet. 2008;40(9):1092–7.

    Article  PubMed  CAS  Google Scholar 

  17. Unoki H, Takahashi A, Kawaguchi T, et al. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet. 2008;40(9):1098–102.

    Article  PubMed  CAS  Google Scholar 

  18. Rung J, Cauchi S, Albrechtsen A, et al. Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nat Genet. 2009;41(10):1110–5.

    Article  PubMed  CAS  Google Scholar 

  19. Dupuis J, Langenberg C, Prokopenko I, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42(2):105–16.

    Article  PubMed  CAS  Google Scholar 

  20. Voight BF, Scott LJ, Steinthorsdottir V, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010;42(7):579–89.

    Article  PubMed  CAS  Google Scholar 

  21. Qi L, Cornelis MC, Kraft P, et al. Genetic variants at 2q24 are associated with susceptibility to type 2 diabetes. Hum Mol Genet. 2010;19:2706–15.

    Article  PubMed  CAS  Google Scholar 

  22. Florez JC, Jablonski KA, Bayley N, et al. TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N Engl J Med. 2006;355(3):241–50.

    Article  PubMed  CAS  Google Scholar 

  23. Wang J, Kuusisto J, Vanttinen M, et al. Variants of transcription factor 7-like 2 (TCF7L2) gene predict conversion to type 2 diabetes in the Finnish Diabetes Prevention Study and are associated with impaired glucose regulation and impaired insulin secretion. Diabetologia. 2007;50(6):1192–2000.

    Article  PubMed  CAS  Google Scholar 

  24. Maher B. The case of the missing heritability. Nature. 2008;456:18–21.

    Article  PubMed  CAS  Google Scholar 

  25. • Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature 2009;461(7265):747753. This review article examines potential sources of missing heritability and proposes research strategies to illuminate the genetics of complex diseases.

  26. Craddock N, Hurles ME, Cardin N, et al. Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature. 2010;464(7289):713–20.

    Article  PubMed  CAS  Google Scholar 

  27. Meigs JB, Shrader P, Sullivan LM, et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med. 2008;359:2208–19.

    Article  PubMed  CAS  Google Scholar 

  28. Lango H, UK Type 2 Diabetes Genetics Consortium, et al. Assessing the combined impact of 18 common genetic variants of modest effect sizes on type 2 diabetes risk. Diabetes. 2008;57(11):3129–35.

    Article  PubMed  CAS  Google Scholar 

  29. Qi Q, Li H, Wu Y, et al. Combined effects of 17 common genetic variants on type 2 diabetes risk in a Han Chinese population. Diabetologia. 2010;53(10):2163–6.

    Article  PubMed  CAS  Google Scholar 

  30. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl):245–54.

    Article  PubMed  CAS  Google Scholar 

  31. •• Godfrey KM, Sheppard A, Gluckman PD, et al. Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes 2011;60(5):1528–34. This study implicates the human prenatal environment with epigenetic changes in nonimprinted genes and is the first to link epigenetic status at birth with clinically relevant later phenotypic variation such as body composition and metabolic function.

    Article  PubMed  CAS  Google Scholar 

  32. Grant SF, Thorleifsson G, Reynisdottir I, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006;38:320–3.

    Article  PubMed  CAS  Google Scholar 

  33. Almind K, Bjorbaek C, Vestergaard H, et al. Aminoacid polymorphisms of insulin receptor substrate-1 in non-insulin-dependent diabetes mellitus. Lancet. 1993;342:828–32.

    Article  PubMed  CAS  Google Scholar 

  34. Deeb SS, Fajas L, Nemoto M, et al. A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet. 1998;20:284–7.

    Article  PubMed  CAS  Google Scholar 

  35. Hani EH, Boutin P, Durand E, et al. Missense mutations in the pancreatic islet beta cell inwardly rectifying K+ channel gene (KIR6.2/BIR): a meta-analysis suggests a role in the polygenic basis of type II diabetes mellitus in Caucasians. Diabetologia. 1998;41:1511–5.

    Article  PubMed  CAS  Google Scholar 

  36. Minton JA, Hattersley AT, Owen K, et al. Association studies of genetic variation in the WFS1 gene and type 2 diabetes in U.K. populations. Diabetes. 2002;51:1287–90.

    Article  PubMed  CAS  Google Scholar 

  37. Sandhu MS, Weedon MN, Fawcett KA, et al. Common variants in WFS1 confer risk of type 2 diabetes. Nat Genet. 2007;39:951–3.

    Article  PubMed  CAS  Google Scholar 

  38. Winckler W, Burtt NP, Holmkvist J, et al. Association of common variation in the HNF1alpha gene region with risk of type 2 diabetes. Diabetes. 2005;54:2336–42.

    Article  PubMed  CAS  Google Scholar 

  39. Prokopenko I, Langenberg C, Florez JC, et al. Variants in MTNR1B influence fasting glucose levels. Nat Genet. 2009;41(1):77–81.

    Article  PubMed  CAS  Google Scholar 

  40. Lyssenko V, Nagorny CL, Erdos MR, et al. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat Genet. 2009;41(1):82–8.

    Article  PubMed  CAS  Google Scholar 

  41. Bouatia-Naji N, Bonnefond A, Cavalcanti-Proença C, et al. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat Genet. 2009;41(1):89–94.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflict of interest relevant to this article was reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angharad R. Morgan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgan, A.R. Determining Genetic Risk Factors for Pediatric Type 2 Diabetes. Curr Diab Rep 12, 88–92 (2012). https://doi.org/10.1007/s11892-011-0245-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-011-0245-4

Keywords

Navigation