Skip to main content

Advertisement

Log in

Differentiation, expansion, and homeostasis of autoreactive T cells in type 1 diabetes mellitus

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Autoreactive T cells play a major role in the pathogenesis of type 1 diabetes mellitus (T1DM) and are considered a major target of immunomodulatory strategies aimed at preventing or delaying the disease onset. However, the T-cell response against insulinproducing β cells is still poorly understood. T cells potentially able to recognize and destroy β cells are present in most individuals, but only in a few do they differentiate into pathogenic effectors. Recent and novel findings in T-cell biology on the dynamics of T-cell activation and memory maintenance are shedding new light on the general mechanisms of the T-cell response. In this article, we discuss how new discoveries about T-cell differentiation, expansion, and homeostasis could help to clarify mechanisms of autoimmunity that lead to T1DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Roep BO: The role of T-cells in the pathogenesis of type 1 diabetes: from cause to cure. Diabetologia 2003, 46:305–321.

    PubMed  CAS  Google Scholar 

  2. Di Lorenzo TP, Peakman M, Roep BO: Translational mini-review series on type 1 diabetes: systematic analysis of T cell epitopes in autoimmune diabetes. Clin Exp Immunol 2007, 148:1–16.

    PubMed  Google Scholar 

  3. Oling V, Marttila J, Ilonen J, et al.: GAD65- and proinsulinspecific CD4+ T-cells detected by MHC class II tetramers in peripheral blood of type 1 diabetes patients and at-risk subjects. J Autoimmun 2005, 25:235–243.

    Article  PubMed  CAS  Google Scholar 

  4. Reijonen H, Mallone R, Heninger AK, et al.: GAD65-specific CD4+ T-cells with high antigen avidity are prevalent in peripheral blood of patients with type 1 diabetes. Diabetes 2004, 53:1987–1994.

    Article  PubMed  CAS  Google Scholar 

  5. Seyfert-Margolis V, Gisler TD, Asare AL, et al.: Analysis of T-cell assays to measure autoimmune responses in subjects with type 1 diabetes: results of a blinded controlled study. Diabetes 2006, 55:2588–2594.

    Article  PubMed  CAS  Google Scholar 

  6. Danke NA, Koelle DM, Yee C, et al.: Autoreactive T cells in healthy individuals. J Immunol 2004, 172:5967–5972.

    PubMed  CAS  Google Scholar 

  7. Viglietta V, Kent SC, Orban T, Hafler DA: GAD65-reactive T cells are activated in patients with autoimmune type 1a diabetes. J Clin Invest 2002, 109:895–903.

    PubMed  CAS  Google Scholar 

  8. Endl J, Rosinger S, Schwarz B, et al.: Coexpression of CD25 and OX40 (CD134) receptors delineates autoreactive T-cells in type 1 diabetes. Diabetes 2006, 55:50–60.

    Article  PubMed  CAS  Google Scholar 

  9. Monti P, Scirpoli M, Rigamonti A, et al.: Evidence for in vivo primed and expanded autoreactive T cells as a specific feature of patients with type 1 diabetes. J Immunol 2007, 179:5785–5792.

    PubMed  CAS  Google Scholar 

  10. Bingley PJ, Bonifacio E, Mueller PW: Diabetes Antibody Standardization Program: first assay proficiency evaluation. Diabetes 2003, 52:1128–1136.

    Article  PubMed  CAS  Google Scholar 

  11. Torn C, Mueller PW, Schlosser M, et al.: Diabetes Antibody Standardization Program: evaluation of assays for autoantibodies to glutamic acid decarboxylase and islet antigen-2. Diabetologia 2008, 51:846–852.

    Article  PubMed  CAS  Google Scholar 

  12. Martinuzzi E, Novelli G, Scotto M, et al.: The frequency and immunodominance of islet-specific CD8+ T-cell responses change after type 1 diabetes diagnosis and treatment. Diabetes 2008, 57:1312–1320.

    Article  PubMed  CAS  Google Scholar 

  13. Schloot NC, Meierhoff G, Karlsson Faresjö M,: Comparison of cytokine ELISpot assay formats for the detection of islet antigen autoreactive T cells. Report of the third immunology of diabetes society T-cell workshop. J Autoimmun 2003, 21:365–376.

    Article  PubMed  CAS  Google Scholar 

  14. Mannering SI, Morris JS, Stone NL, et al.: CD4+ T cell proliferation in response to GAD and proinsulin in healthy, pre-diabetic, and diabetic donors. Ann N Y Acad Sci 2004, 1037:16–21.

    Article  PubMed  CAS  Google Scholar 

  15. Nepom GT, Buckner JH, Novak EJ, et al.: HLA class II tetramers: tools for direct analysis of antigen-specific CD4+ T cells. Arthritis Rheum 2002, 46:5–12.

    Article  PubMed  CAS  Google Scholar 

  16. Yang J, Brook MO, Carvalho-Gaspar M, et al.: Allograft rejection mediated by memory T cells is resistant to regulation. Proc Natl Acad Sci U S A 2007, 104:19954–19959.

    Article  PubMed  CAS  Google Scholar 

  17. Valujskikh A, Li XC: Frontiers in nephrology: T cell memory as a barrier to transplant tolerance. J Am Soc Nephrol 2007, 18:2252–2261.

    Article  PubMed  CAS  Google Scholar 

  18. Effect of intensive therapy on residual beta-cell function in patients with type 1 diabetes in the diabetes control and complications trial. A randomized, controlled trial.iThe Diabetes Control and Complications Trial Research Group [no authors listed]. Ann Intern Med 1998, 128:517–523.

  19. Bonifacio E, Scirpoli M, Kredel K, et al.: Early autoantibody responses in prediabetes are IgG1 dominated and suggest antigen-specific regulation. J Immunol 1999, 163:525–532.

    PubMed  CAS  Google Scholar 

  20. von Herrath M, Sanda S, Herold K: Type 1 diabetes as a relapsing-remitting disease? Nat Rev Immunol 2007, 7:988–994.

    Article  CAS  Google Scholar 

  21. Schluns KS, Kieper WC, Jameson SC, Lefrancois L: Interleukin- 7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat Immunol 2000, 1:426–432.

    Article  PubMed  CAS  Google Scholar 

  22. Soares MV, Borthwick NJ, Maini MK, et al.: IL-7-dependent extrathymic expansion of CD45RA+ T cells enables preservation of a naive repertoire. J Immunol 1998, 161:5909–5917.

    PubMed  CAS  Google Scholar 

  23. Monti P, Scirpoli M, Maffi P, et al.: Islet transplantation in patients with autoimmune diabetes induces homeostatic cytokines that expand autoreactive memory T cells. J Clin Invest 2008, 118:1806–1814.

    PubMed  CAS  Google Scholar 

  24. Sportes C, Hakim FT, Memon SA, et al.: Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets. J Exp Med 2008, 205:1701–1714.

    Article  PubMed  CAS  Google Scholar 

  25. Goldrath AW, Bevan MJ: Low-affinity ligands for the TCR drive proliferation of mature CD8+ T cells in lymphopenic hosts. Immunity 1999, 11:183–190.

    Article  PubMed  CAS  Google Scholar 

  26. King C, Ilic A, Koelsch K, Sarvetnick N: Homeostatic expansion of T cells during immune insufficiency generates autoimmunity. Cell 2004, 117:265–277.

    Article  PubMed  CAS  Google Scholar 

  27. Santiago JL, Alizadeh BZ, Martinez A, et al.: Study of the association between the CAPSL-IL7R locus and type 1 diabetes. Diabetologia 2008, 51:1653–1658.

    Article  PubMed  CAS  Google Scholar 

  28. Smyth DJ, Cooper JD, Bailey R, et al.: A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat Genet 2006, 38:617–619.

    Article  PubMed  CAS  Google Scholar 

  29. Todd JA, Walker NM, Cooper JD, et al.: Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 2007, 39:857–864.

    Article  PubMed  CAS  Google Scholar 

  30. Hafler DA, Compston A, Sawcer S, et al.: Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med 2007, 57:851–862.

    Google Scholar 

  31. Liu W, Putnam AL, Xu-Yu Z, et al.: CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 2006, 203:1701–1711.

    Article  PubMed  CAS  Google Scholar 

  32. Maki K, Sunaga S, Komagata Y, et al.: Interleukin 7 receptor-deficient mice lack gammadelta T cells. Proc Natl Acad Sci U S A 1996, 93:7172–7177.

    Article  PubMed  CAS  Google Scholar 

  33. von Freeden-Jeffry U, Vieira P, Lucian LA, et al.: Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J Exp Med 1995, 181:1519–1526.

    Article  Google Scholar 

  34. Vrisekoop N, den Braber I, de Boer AB, et al.: Sparse production but preferential incorporation of recently produced naive T cells in the human peripheral pool. Proc Natl Acad Sci U S A 2008, 105:6115–6120.

    Article  PubMed  CAS  Google Scholar 

  35. Vukmanovic-Stejic M, Zhang Y, Cook JE, et al.: Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J Clin Invest 2006, 16:2423–2433.

    Article  CAS  Google Scholar 

  36. Fearon DT, Manders P, Wagner SD: Arrested differentiation, the self-renewing memory lymphocyte, and vaccination. Science 2001, 293:248–250.

    Article  PubMed  CAS  Google Scholar 

  37. Reiner SL, Sallusto F, Lanzavecchia A: Division of labor with a workforce of one: challenges in specifying effector and memory T cell fate. Science 2007, 317:622–625.

    Article  PubMed  CAS  Google Scholar 

  38. Chang JT, Palanivel VR, Kinjyo I, et al.: Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 2007, 315:1687–1691.

    Article  PubMed  CAS  Google Scholar 

  39. Snyder CM, Cho KS, Bonnett EL, et al.: Memory inflation during chronic viral infection is maintained by continuous production of short-lived, functional T cells. Immunity 2008, 29:650–659.

    Article  PubMed  CAS  Google Scholar 

  40. Li R, Perez N, Karumuthil-Melethil S, Vasu C: Bone marrow is a preferential homing site for autoreactive T-cells in type 1 diabetes. Diabetes 2007, 56:2251–2259.

    Article  PubMed  CAS  Google Scholar 

  41. Dubois-Laforgue D, Hendel H, Caillat-Zucman S, et al.: A common stromal cell-derived factor-1 chemokine gene variant is associated with the early onset of type 1 diabetes. Diabetes 2001, 50:1211–1213.

    Article  PubMed  CAS  Google Scholar 

  42. Leng Q, Nie Y, Zou Y, Chen J: Elevated CXCL12 expression in the bone marrow of NOD mice is associated with altered T cell and stem cell trafficking and diabetes development. BMC Immunol 2008, 9:51.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Monti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monti, P., Heninger, AK. & Bonifacio, E. Differentiation, expansion, and homeostasis of autoreactive T cells in type 1 diabetes mellitus. Curr Diab Rep 9, 113–118 (2009). https://doi.org/10.1007/s11892-009-0020-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-009-0020-y

Keywords

Navigation