Skip to main content

Advertisement

Log in

Intestinal Microbes, Diet, and Colorectal Cancer

  • Molecular Epidemiology (L Jiao, Section Editor)
  • Published:
Current Colorectal Cancer Reports

Abstract

Colorectal cancer (CRC) is the most common gastrointestinal cancer, and a significant health care problem globally. Dietary factors, for example high meat consumption and deficiency of fiber, calcium, vitamin D, and folate, are well-recognized to be associated with a risk of developing CRC. Colonic microbiota, by living in a mutual relationship and participating in key metabolic functions that compliment host physiology, is crucially important in the maintenance of our health. A state of imbalance in host–microbe homeostasis, termed dysbiosis, is associated with several diseases, including CRC. Epidemiological studies have revealed strong associations between diet, microbiota, and CRC. Substantial in-vitro and in-vivo evidence suggests that the dynamic composition and diversity of colonic microbiota are affected by alteration of the diet, and that the balance between the beneficial and detrimental microbial metabolites is of crucial importance in mediation of the dietary risk factors of colonic carcinogenesis. A better understanding of complex diet–microbiota–CRC relationships can help us understand how diet affects the risk of CRC and will provide a more scientific approach to the development of novel strategies to prevent CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AA:

African American

AICR:

American Institute for Cancer Research

AOM:

Azoxymethane

B-12:

Cyanocobalamin

BA:

Bile acids

CA:

Caucasian American

CDA:

Chenodeoxycholic acid

CH4 :

Methane

COX:

Cycloxygenase

DCA:

Deoxycholic acid

EPEC:

Entero-pathogenic Escherichia coli

EPIC:

European Prospective Investigation into Cancer and Nutrition

ETBF:

Entero-toxigenic Bacteroides fragilis

EA:

European African

GF:

Germ-free

H2 :

Hydrogen

H2S:

Hydrogen sulfide

HCA:

Heterocylic amines

IBD:

Inflammatory Bowel Disease

LCA:

Lithocholic acid

MA:

Methanogenic archaea

MALT:

Mucosa-Associated Lymphoid Tissue

NA:

Native African

NOC:

N-nitroso compounds

PAH:

Polycyclic aromatic hydrocarbons

ROS:

Reactive oxygen species

RNS:

Reactive nitrogen species

RS:

Resistant Starch

SCFA:

Short-chain fatty acids

SRB:

Sulfate-reducing bacteria

WCRF:

World Cancer Research Fund

References

Papers of particular interest, published recently have been highlighted as: • Of importance

  1. Doll R, Peto R. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst. 1981;66(6):1191–308.

    CAS  PubMed  Google Scholar 

  2. Nicholson JK. Global systems biology, personalized medicine and molecular epidemiology. Mol Syst Biol. 2006;2:52.

    PubMed  Google Scholar 

  3. Wardwell LH, Huttenhower C, Garrett WS. Current concepts of the intestinal microbiota and the pathogenesis of infection. Curr Infect Dis Rep. 2011;13(1):28–34.

    PubMed  Google Scholar 

  4. Cebra JJ, Periwal SB, Lee G, Lee F, Shroff KE. Development and maintenance of the gut-associated lymphoid tissue (GALT): the roles of enteric bacteria and viruses. Dev Immunol. 1998;6(1–2):13–8.

    CAS  PubMed  Google Scholar 

  5. O’Keefe SJ, Winter TA, Newton KA, Ogden JM, Young GO, Price SK. Severe malnutrition associated with alpha-heavy chain disease: response to tetracycline and intensive nutritional support. Am J Gastroenterol. 1988;83(9):995–1001.

    PubMed  Google Scholar 

  6. Schloss PD, Handelsman J. Metagenomics for studying unculturable microorganisms: cutting the Gordian knot. Genome Biol. 2005;6(8):229.

    PubMed  Google Scholar 

  7. • Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–214. The human microbiome project was launched to study and characterize the ecology of human microbiome, which was found to vary both within and between the individuals, enabling future characterization of the epidemiology, ecology, and translational applications of the human microbiome.

  8. • Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–80. In their fecal metagenomics analysis, the authors have, for the first time, identified distinct clustering of the microbiome into three main ‘enterotypes’ independent of age, gender or country, depending on their common networks of co- and anti-correlating genera.

    CAS  PubMed  Google Scholar 

  9. Flood DM, Weiss NS, Cook LS, Emerson JC, Schwartz SM, Potter JD. Colorectal cancer incidence in Asian migrants to the United States and their descendants. Cancer Causes Control. 2000;11(5):403–11.

    CAS  PubMed  Google Scholar 

  10. Gonzalez CA. The European Prospective Investigation into Cancer and Nutrition (EPIC). Public Health Nutr. 2006;9(1A):124–6.

    PubMed  Google Scholar 

  11. • Cross AJ, Ferrucci LM, Risch A, et al. A large prospective study of meat consumption and colorectal cancer risk: an investigation of potential mechanisms underlying this association. Cancer Res. 2010;70(6):2406–14. In this very large US prospective study of 2,719 CRC cases in a cohort of 300,948 men and women, the authors found a positive association of red and processed meat intake with CRC and suggested involvement of heme iron, nitrate/nitrite, and HCA from meat as a possible explanation of these associations.

    CAS  PubMed  Google Scholar 

  12. Culp SJ, Gaylor DW, Sheldon WG, Goldstein LS, Beland FA. A comparison of the tumors induced by coal tar and benzo[a]pyrene in a 2-year bioassay. Carcinogenesis. 1998;19(1):117–24.

    CAS  PubMed  Google Scholar 

  13. Hughes R, Magee EA, Bingham S. Protein degradation in the large intestine: relevance to colorectal cancer. Curr Issues Intest Microbiol. 2000;1(2):51–8.

    CAS  PubMed  Google Scholar 

  14. de Vogel J, Van-Eck WB, Sesink AL, Jonker-Termont DS, Kleibeuker J, van der Meer R. Dietary heme injures surface epithelium resulting in hyperproliferation, inhibition of apoptosis and crypt hyperplasia in rat colon. Carcinogenesis. 2008;29(2):398–403.

    PubMed  Google Scholar 

  15. Mirvish SS. Role of N-nitroso compounds (NOC) and N-nitrosation in etiology of gastric, esophageal, nasopharyngeal and bladder cancer and contribution to cancer of known exposures to NOC. Cancer Lett. 1995;93(1):17–48.

    CAS  PubMed  Google Scholar 

  16. Cross AJ, Pollock JR, Bingham SA. Haem, not protein or inorganic iron, is responsible for endogenous intestinal N-nitrosation arising from red meat. Cancer Res. 2003;63(10):2358–60.

    CAS  PubMed  Google Scholar 

  17. Ward MH, Cross AJ, Divan H, et al. Processed meat intake, CYP2A6 activity and risk of colorectal adenoma. Carcinogenesis. 2007;28(6):1210–6.

    CAS  PubMed  Google Scholar 

  18. Bingham SA, Hughes R, Cross AJ. Effect of white versus red meat on endogenous N-nitrosation in the human colon and further evidence of a dose response. J Nutr. 2002;132(11 Suppl):3522S–5S.

    CAS  PubMed  Google Scholar 

  19. Kazerouni N, Sinha R, Hsu CH, Greenberg A, Rothman N. Analysis of 200 food items for benzo[a]pyrene and estimation of its intake in an epidemiologic study. Food Chem Toxicol. 2001;39(5):423–36.

    CAS  PubMed  Google Scholar 

  20. Schut HA, Snyderwine EG. DNA adducts of heterocyclic amine food mutagens: implications for mutagenesis and carcinogenesis. Carcinogenesis. 1999;20(3):353–68.

    CAS  PubMed  Google Scholar 

  21. Hasegawa R, Sano M, Tamano S, et al. Dose-dependence of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) carcinogenicity in rats. Carcinogenesis. 1993;14(12):2553–7.

    CAS  PubMed  Google Scholar 

  22. Kassie F, Rabot S, Kundi M, Chabicovsky M, Qin HM, Knasmuller S. Intestinal microflora plays a crucial role in the genotoxicity of the cooked food mutagen 2-amino-3-methylimidazo[4,5-f]quinoline. Carcinogenesis. 2001;22(10):1721–5.

    CAS  PubMed  Google Scholar 

  23. • Moschen AR, Wieser V, Tilg H. Dietary factors: major regulators of the Gut’s microbiota. Gut Liver. 2012;6(4):411–6. In this up-to-date review, the authors summarized the effects of different diets on human microbiome composition and diversity.

    CAS  PubMed  Google Scholar 

  24. Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology. 2009;137(5):1716–24.

    CAS  PubMed  Google Scholar 

  25. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1(6):6ra14.

    PubMed  Google Scholar 

  26. • De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107(33):14691–6. In their study of the effect of diet on microbiota, the authors noted significant differences between the fecal microbiomes of European and African children and implicated their different diets (western vs African diet) as the reason.

    PubMed  Google Scholar 

  27. • Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–8. In their analysis of the diet inventories and fecal microbiomes of subjects from four countries, the authors noted these correlated with their diet in the long term, supporting the involvement of the diet in the modulation of microbiota.

    CAS  PubMed  Google Scholar 

  28. Attene-Ramos MS, Wagner ED, Gaskins HR, Plewa MJ. Hydrogen sulfide induces direct radical-associated DNA damage. Mol Cancer Res. 2007;5(5):455–9.

    CAS  PubMed  Google Scholar 

  29. Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47(2):241–59.

    CAS  PubMed  Google Scholar 

  30. • Conlon MA, Kerr CA, McSweeney CS, et al. Resistant starches protect against colonic DNA damage and alter microbiota and gene expression in rats fed a Western diet. J Nutr. 2012;142(5):832–40. By supplementing rats fed on a western diet with resistant starch that enhanced SCFA and minimized ammonia and phenol levels, the authors noted that resistant starch opposed western diet-induced colonic DNA damage.

    CAS  PubMed  Google Scholar 

  31. Dolara P, Luceri C, De Filippo C, et al. Red wine polyphenols influence carcinogenesis, intestinal microflora, oxidative damage and gene expression profiles of colonic mucosa in F344 rats. Mutat Res. 2005;591(1–2):237–46.

    CAS  PubMed  Google Scholar 

  32. • Devkota S, Wang Y, Devkota S, Wang Y, Musch MW, et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature. 2012;487(7405):104–8. In this study the authors have noted that milk-derived fat stimulated taurine rich bile acids which promoted the growth of a sulfite (in taurine)-reducing B. wadsworthia, that was associated with colitis in Il10 −/− mice, offering a possible mechanism of western diet-related gastrointestinal diseases.

    CAS  PubMed  Google Scholar 

  33. Sellon RK, Tonkonogy S, Schultz M, et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immunol. 1998;66(11):5224–31.

    CAS  Google Scholar 

  34. Uronis JM, Muhlbauer M, Herfarth HH, Rubinas TC, Jones GS, Jobin C. Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility. PLoS One. 2009;4(6):0006026.

    Google Scholar 

  35. Swidsinski A, Khilkin M, Kerjaschki D, et al. Association between intraepithelial Escherichia coli and colorectal cancer. Gastroenterology. 1998;115(2):281–6.

    CAS  PubMed  Google Scholar 

  36. Abdulamir AS, Hafidh RR, Abu Bakar F. The association of Streptococcus bovis/gallolyticus with colorectal tumors: the nature and the underlying mechanisms of its etiological role. J Exp Clin Cancer Res. 2011;30(11):1756–9966.

    Google Scholar 

  37. Shen XJ, Rawls JF, Randall T, et al. Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut Microbes. 2010;1(3):138–47.

    PubMed  Google Scholar 

  38. Sobhani I, Tap J, Roudot-Thoraval F, et al. Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One. 2011;6(1):0016393.

    Google Scholar 

  39. Castellarin M, Warren RL, Freeman JD, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22(2):299–306.

    CAS  PubMed  Google Scholar 

  40. Marchesi JR, Dutilh BE, Hall N, et al. Towards the human colorectal cancer microbiome. PLoS One. 2011;6(5):24.

    Google Scholar 

  41. Scanlan PD, Shanahan F, Clune Y, et al. Culture-independent analysis of the gut microbiota in colorectal cancer and polyposis. Environ Microbiol. 2008;10(3):789–98.

    CAS  PubMed  Google Scholar 

  42. O’Keefe SJ, Chung D, Mahmoud N, et al. Why do African Americans get more colon cancer than Native Africans? J Nutr. 2007;137(1 Suppl):175S–82S.

    PubMed  Google Scholar 

  43. O’Keefe SJ, Ou J, Aufreiter S, et al. Products of the colonic microbiota mediate the effects of diet on colon cancer risk. J Nutr. 2009;139(11):2044–8.

    PubMed  Google Scholar 

  44. Fukata M, Chen A, Vamadevan AS, et al. Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology. 2007;133(6):1869–81.

    CAS  PubMed  Google Scholar 

  45. • Wu WK, Sung JJ, Lee CW, Yu J, Cho CH. Cyclooxygenase-2 in tumorigenesis of gastrointestinal cancers: an update on the molecular mechanisms. Cancer Lett. 2010;295(1):7–16. In this elaborate review the authors explain how NSAIDs suppress gastrointestinal tumors on the basis of the involvement of COX-2, PG-E2, and the signaling mechanisms involved.

    CAS  PubMed  Google Scholar 

  46. Humblot C, Murkovic M, Rigottier-Gois L, et al. Beta-glucuronidase in human intestinal microbiota is necessary for the colonic genotoxicity of the food-borne carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline in rats. Carcinogenesis. 2007;28(11):2419–25.

    CAS  PubMed  Google Scholar 

  47. Dabek M, McCrae SI, Stevens VJ, Duncan SH, Louis P. Distribution of beta-glucosidase and beta-glucuronidase activity and of beta-glucuronidase gene gus in human colonic bacteria. FEMS Microbiol Ecol. 2008;66(3):487–95.

    CAS  PubMed  Google Scholar 

  48. Kim DH, Jin YH. Intestinal bacterial beta-glucuronidase activity of patients with colon cancer. Arch Pharm Res. 2001;24(6):564–7.

    CAS  PubMed  Google Scholar 

  49. Hijova E, Bomba A, Bertkova I, Strojny L, Szabadosova V, Soltesova A. Prebiotics and bioactive natural substances induce changes of composition and metabolic activities of the colonic microflora in cancerous rats. Acta Biochim Pol. 2012;59(2):271–4.

    CAS  PubMed  Google Scholar 

  50. Gorbach SL, Goldin BR. The intestinal microflora and the colon cancer connection. Rev Infect Dis. 1990;12(2):S252–61.

    CAS  PubMed  Google Scholar 

  51. Roldan MD, Perez-Reinado E, Castillo F, Moreno-Vivian C. Reduction of polynitroaromatic compounds: the bacterial nitroreductases. FEMS Microbiol Rev. 2008;32(3):474–500.

    CAS  PubMed  Google Scholar 

  52. Nakamura J, Kubota Y, Miyaoka M, Saitoh T, Mizuno F, Benno Y. Comparison of four microbial enzymes in Clostridia and Bacteroides isolated from human feces. Microbiol Immunol. 2002;46(7):487–90.

    CAS  PubMed  Google Scholar 

  53. Cummings JH, Englyst HN. Measurement of starch fermentation in the human large intestine. Can J Physiol Pharmacol. 1991;69(1):121–9.

    CAS  PubMed  Google Scholar 

  54. Chirakkal H, Leech SH, Brookes KE, Prais AL, Waby JS, Corfe BM. Upregulation of BAK by butyrate in the colon is associated with increased Sp3 binding. Oncogene. 2006;25(54):7192–200.

    CAS  PubMed  Google Scholar 

  55. Hinnebusch BF, Meng S, Wu JT, Archer SY, Hodin RA. The effects of short-chain fatty acids on human colon cancer cell phenotype are associated with histone hyperacetylation. J Nutr. 2002;132(5):1012–7.

    CAS  PubMed  Google Scholar 

  56. Comalada M, Bailon E, de Haro O, et al. The effects of short-chain fatty acids on colon epithelial proliferation and survival depend on the cellular phenotype. J Cancer Res Clin Oncol. 2006;132(8):487–97.

    CAS  PubMed  Google Scholar 

  57. Andoh A, Shimada M, Araki Y, Fujiyama Y, Bamba T. Sodium butyrate enhances complement-mediated cell injury via down-regulation of decay-accelerating factor expression in colonic cancer cells. Cancer Immunol Immunother: CII. 2002;50(12):663–72.

    CAS  PubMed  Google Scholar 

  58. Zgouras D, Wachtershauser A, Frings D, Stein J. Butyrate impairs intestinal tumor cell-induced angiogenesis by inhibiting HIF-1alpha nuclear translocation. Biochem Biophys Res Commun. 2003;300(4):832–8.

    CAS  PubMed  Google Scholar 

  59. Zeng H, Briske-Anderson M. Prolonged butyrate treatment inhibits the migration and invasion potential of HT1080 tumor cells. J Nutr. 2005;135(2):291–5.

    CAS  PubMed  Google Scholar 

  60. Davie JR. Inhibition of histone deacetylase activity by butyrate. J Nutr. 2003;133(7 Suppl):2485S–93S.

    CAS  PubMed  Google Scholar 

  61. Place RF, Noonan EJ, Giardina C. HDAC inhibition prevents NF-kappa B activation by suppressing proteasome activity: down-regulation of proteasome subunit expression stabilizes I kappa B alpha. Biochem Pharmacol. 2005;70(3):394–406.

    CAS  PubMed  Google Scholar 

  62. Schwab M, Reynders V, Ulrich S, Zahn N, Stein J, Schroder O. PPARgamma is a key target of butyrate-induced caspase-3 activation in the colorectal cancer cell line Caco-2. Apoptosis: Int J Program Cell Death. 2006;11(10):1801–11.

    CAS  Google Scholar 

  63. Karaki S, Tazoe H, Hayashi H, et al. Expression of the short-chain fatty acid receptor, GPR43, in the human colon. J Mol Histol. 2008;39(2):135–42.

    CAS  PubMed  Google Scholar 

  64. Brown AJ, Goldsworthy SM, Barnes AA, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem. 2003;278(13):11312–9.

    CAS  PubMed  Google Scholar 

  65. Willemsen LE, Koetsier MA, van Deventer SJ, van Tol EA. Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts. Gut. 2003;52(10):1442–7.

    CAS  PubMed  Google Scholar 

  66. Schauber J, Svanholm C, Termen S, et al. Expression of the cathelicidin LL-37 is modulated by short chain fatty acids in colonocytes: relevance of signalling pathways. Gut. 2003;52(5):735–41.

    CAS  PubMed  Google Scholar 

  67. Malago JJ, Koninkx JF, Tooten PC, van Liere EA, van Dijk JE. Anti-inflammatory properties of heat shock protein 70 and butyrate on Salmonella-induced interleukin-8 secretion in enterocyte-like Caco-2 cells. Clin Exp Immunol. 2005;141(1):62–71.

    CAS  PubMed  Google Scholar 

  68. Puchowicz MA, Bederman IR, Comte B, et al. Zonation of acetate labeling across the liver: implications for studies of lipogenesis by MIDA. Am J Physiol. 1999;277(6 Pt 1):E1022–7.

    CAS  PubMed  Google Scholar 

  69. Al-Lahham SH, Peppelenbosch MP, Roelofsen H, Vonk RJ, Venema K. Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. Biochim Biophys Acta. 2010;1801(11):1175–83.

    CAS  PubMed  Google Scholar 

  70. Elsden SR, Hilton MG, Waller JM. The end products of the metabolism of aromatic amino acids by Clostridia. Arch Microbiol. 1976;107(3):283–8.

    CAS  PubMed  Google Scholar 

  71. Russell JB. Fermentation of Peptides by Bacteroides ruminicola B(1)4. Appl Environ Microbiol. 1983;45(5):1566–74.

    CAS  PubMed  Google Scholar 

  72. Cummings JH, Hill MJ, Bone ES, Branch WJ, Jenkins DJ. The effect of meat protein and dietary fiber on colonic function and metabolism. II. Bacterial metabolites in feces and urine. Am J Clin Nutr. 1979;32(10):2094–101.

    Google Scholar 

  73. Nowak A, Libudzisz Z. Ability of probiotic Lactobacillus casei DN 114001 to bind or/and metabolise heterocyclic aromatic amines in vitro. Eur J Nutr. 2009;48(7):419–27.

    CAS  PubMed  Google Scholar 

  74. Reddy BS. Diet and excretion of bile acids. Cancer Res. 1981;41(9 Pt 2):3766–8.

    CAS  PubMed  Google Scholar 

  75. McGarr SE, Ridlon JM, Hylemon PB. Diet, anaerobic bacterial metabolism, and colon cancer: a review of the literature. J Clin Gastroenterol. 2005;39(2):98–109.

    PubMed  Google Scholar 

  76. Haines A, Hill MJ, Thompson MH, et al. A prospective study of faecal bile acids and colorectal cancer. Eur J Cancer Prev. 2000;9(5):317–23.

    CAS  PubMed  Google Scholar 

  77. • Ou J, DeLany JP, Zhang M, Sharma S, O’Keefe SJ. Association between low colonic short-chain fatty acids and high bile acids in high colon cancer risk populations. Nutr Cancer. 2012;64(1):34–40. The authors noted that high fecal bile acids (with carcinogenic properties) and low SCFA (with anti-inflammatory and anti-neoplastic properties) explain the high colon cancer risk of a high red meat and low fiber diet, emphasizing the involvement of microbiota and metabolites in mediation of diet-related CRC risk.

    CAS  PubMed  Google Scholar 

  78. Cheng K, Raufman JP. Bile acid-induced proliferation of a human colon cancer cell line is mediated by transactivation of epidermal growth factor receptors. Biochem Pharmacol. 2005;70(7):1035–47.

    CAS  PubMed  Google Scholar 

  79. Bernstein H, Bernstein C, Payne CM, Dvorak K. Bile acids as endogenous etiologic agents in gastrointestinal cancer. World J Gastroenterol. 2009;15(27):3329–40.

    CAS  PubMed  Google Scholar 

  80. Powolny A, Xu J, Loo G. Deoxycholate induces DNA damage and apoptosis in human colon epithelial cells expressing either mutant or wild-type p53. Int J Biochem Cell Biol. 2001;33(2):193–203.

    CAS  PubMed  Google Scholar 

  81. Booth LA, Gilmore IT, Bilton RF. Secondary bile acid induced DNA damage in HT29 cells: are free radicals involved? Free Radic Res. 1997;26(2):135–44.

    CAS  PubMed  Google Scholar 

  82. Qiao D, Gaitonde SV, Qi W, Martinez JD. Deoxycholic acid suppresses p53 by stimulating proteasome-mediated p53 protein degradation. Carcinogenesis. 2001;22(6):957–64.

    CAS  PubMed  Google Scholar 

  83. Jurek D, Fleckl E, Marian B. Bile acid induced gene expression in LT97 colonic adenoma cells. Food Chem Toxicol. 2005;43(1):87–93.

    CAS  PubMed  Google Scholar 

  84. Pai R, Tarnawski AS, Tran T. Deoxycholic acid activates beta-catenin signaling pathway and increases colon cell cancer growth and invasiveness. Mol Biol Cell. 2004;15(5):2156–63.

    CAS  PubMed  Google Scholar 

  85. Gibson GR, Macfarlane GT, Cummings JH. Sulphate reducing bacteria and hydrogen metabolism in the human large intestine. Gut. 1993;34(4):437–9.

    CAS  PubMed  Google Scholar 

  86. Wolin M. Microbial formation and utilization of gases. Gottingen: Goltze Press; 1976.

    Google Scholar 

  87. Gibson GR, Cummings JH, Macfarlane GT. Competition for hydrogen between sulphate-reducing bacteria and methanogenic bacteria from the human large intestine. J Appl Bacteriol. 1988;65(3):241–7.

    CAS  PubMed  Google Scholar 

  88. O’Keefe SJ, Kidd M, Espitalier-Noel G, Owira P. Rarity of colon cancer in Africans is associated with low animal product consumption, not fiber. Am J Gastroenterol. 1999;94(5):1373–80.

    PubMed  Google Scholar 

  89. Christl SU, Eisner HD, Dusel G, Kasper H, Scheppach W. Antagonistic effects of sulfide and butyrate on proliferation of colonic mucosa: a potential role for these agents in the pathogenesis of ulcerative colitis. Dig Dis Sci. 1996;41(12):2477–81.

    CAS  PubMed  Google Scholar 

  90. Kanazawa K, Konishi F, Mitsuoka T, et al. Factors influencing the development of sigmoid colon cancer. Bacteriologic and biochemical studies. Cancer. 1996;77(8 Suppl):1701–6.

    CAS  PubMed  Google Scholar 

  91. Ramasamy S, Singh S, Taniere P, Langman MJ, Eggo MC. Sulfide-detoxifying enzymes in the human colon are decreased in cancer and upregulated in differentiation. Am J Physiol Gastrointest Liver Physiol. 2006;291(2):23.

    Google Scholar 

  92. • Nava GM, Carbonero F, Ou J, Benefiel AC, O’Keefe SJ, Gaskins HR. Hydrogenotrophic microbiota distinguish native Africans from African and European Americans. Environ Microbiol Rep. 2012;4:307–15. The authors noted that high dietary resistant starch/fiber promotes the abundance of colonic methanogens (which detoxify H 2 into benign methane) whereas a high red meat diet promotes SRB (which convert H 2 into toxic H 2 S), emphasizing that diet selects for hydrogenic microbiota.

    CAS  Google Scholar 

  93. Pompei A, Cordisco L, Amaretti A, et al. Administration of folate-producing bifidobacteria enhances folate status in Wistar rats. J Nutr. 2007;137(12):2742–6.

    CAS  PubMed  Google Scholar 

  94. Kim YI. Role of folate in colon cancer development and progression. J Nutr. 2003;133(11 Suppl 1):3731S–9S.

    CAS  PubMed  Google Scholar 

  95. • Acharya A, Das I, Chandhok D, Saha T. Redox regulation in cancer: a double-edged sword with therapeutic potential. Oxid Med Cell Longev. 2010;3(1):23–34. In this review the authors describe how oxidative stress and reactive oxygen species cause DNA damage and carcinogenesis.

    PubMed  Google Scholar 

  96. Huycke MM, Joyce W, Wack MF. Augmented production of extracellular superoxide by blood isolates of Enterococcus faecalis. J Infect Dis. 1996;173(3):743–6.

    CAS  PubMed  Google Scholar 

  97. Huycke MM, Abrams V, Moore DR. Enterococcus faecalis produces extracellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA. Carcinogenesis. 2002;23(3):529–36.

    CAS  PubMed  Google Scholar 

  98. Wang X, Huycke MM. Extracellular superoxide production by Enterococcus faecalis promotes chromosomal instability in mammalian cells. Gastroenterology. 2007;132(2):551–61.

    CAS  PubMed  Google Scholar 

  99. Balamurugan R, Rajendiran E, George S, Samuel GV, Ramakrishna BS. Real-time polymerase chain reaction quantification of specific butyrate-producing bacteria, Desulfovibrio and Enterococcus faecalis in the feces of patients with colorectal cancer. J Gastroenterol Hepatol. 2008;23(8 Pt 1):1298–303.

    CAS  PubMed  Google Scholar 

  100. Wu S, Morin PJ, Maouyo D, Sears CL. Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation. Gastroenterology. 2003;124(2):392–400.

    CAS  PubMed  Google Scholar 

  101. Wu S, Rhee KJ, Albesiano E, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 2009;15(9):1016–22.

    CAS  PubMed  Google Scholar 

  102. Cuevas-Ramos G, Petit CR, Marcq I, Boury M, Oswald E, Nougayrede JP. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci U S A. 2010;107(25):11537–42.

    CAS  PubMed  Google Scholar 

  103. Maddocks OD, Short AJ, Donnenberg MS, Bader S, Harrison DJ. Attaching and effacing Escherichia coli downregulate DNA mismatch repair protein in vitro and are associated with colorectal adenocarcinomas in humans. PLoS One. 2009;4(5):13.

    Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. O’Keefe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vipperla, K., O’Keefe, S.J. Intestinal Microbes, Diet, and Colorectal Cancer. Curr Colorectal Cancer Rep 9, 95–105 (2013). https://doi.org/10.1007/s11888-012-0158-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-012-0158-x

Keywords

Navigation