Skip to main content
Log in

Role of Coronary Artery Calcium Score and Coronary CT Angiography in the Diagnosis and Risk Stratification of Individuals with Suspected Coronary Artery Disease

  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Coronary heart disease is the leading cause of death worldwide, and has traditionally been assessed through a patient’s cardiovascular risk profile that is comprised of a combination of genetic, social, physiologic, and environmental factors. A growing discordance is being recognized in the ability of current risk estimation tools to predict outcomes versus that of actual measured outcomes. Exciting new improvements in technology have made noninvasive imaging modalities of the heart—in particular, coronary artery calcium score (CACS) and coronary computed tomography (CT) angiography—an increasingly important component in the diagnosis of ischemic heart disease. The CACS has been found to be a marker of vascular injury that correlates closely with overall atherosclerotic burden, whereas coronary CT angiography permits detection of noncalcified plaque coronary artery stenosis severity. A growing body of literature has developed detailing the valuable prognostic utility of these tests in the management of patients and how they may 1 day be used to complement current risk prediction models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Cooper R, Cutler J, Desvigne-Nickens P, Fortmann SP, Friedman L, Havlik R, et al. Trends and disparities in coronary heart disease, stroke, and other cardiovascular diseases in the United States: findings of the national conference on cardiovascular disease prevention. Circulation. 2000;102(25):3137–47.

    PubMed  CAS  Google Scholar 

  2. Greenland P, Alpert JS, Beller GA, Benjamin EJ, Budoff MJ, Fayad ZA, et al. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2010;56(25):2182–99.

    Article  Google Scholar 

  3. Greenland P, Knoll MD, Stamler J, Neaton JD, Dyer AR, Garside DB, et al. Major risk factors as antecedents of fatal and nonfatal coronary heart disease events. JAMA. 2003;290(7):891–7.

    Article  PubMed  Google Scholar 

  4. Khot UN, Khot MB, Bajzer CT, Sapp SK, Ohman EM, Brener SJ, et al. Prevalence of conventional risk factors in patients with coronary heart disease. JAMA. 2003;290(7):898–904.

    Article  PubMed  Google Scholar 

  5. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):937–52.

    Article  PubMed  Google Scholar 

  6. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement: executive summary. Crit Pathw Cardiol. 2005;4(4):198–203.

    PubMed  Google Scholar 

  7. Sachdeva A, Cannon CP, Deedwania PC, Labresh KA, Smith Jr SC, Dai D, et al. Lipid levels in patients hospitalized with coronary artery disease: an analysis of 136,905 hospitalizations in get with the guidelines. Am Heart J. 2009;157(1):111–7. e112.

    Article  PubMed  CAS  Google Scholar 

  8. Libby P, Ridker PM, Hansson GK. Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol. 2009;54(23):2129–38.

    Article  PubMed  CAS  Google Scholar 

  9. Packard RR, Libby P. Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clin Chem. 2008;54(1):24–38.

    Article  PubMed  CAS  Google Scholar 

  10. Alexopoulos N, Raggi P. Calcification in atherosclerosis. Nat Rev Cardiol. 2009;6(11):681–8.

    Article  PubMed  CAS  Google Scholar 

  11. Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97(18):1837–47.

    PubMed  CAS  Google Scholar 

  12. D’Agostino Sr RB, Grundy S, Sullivan LM, Wilson P. Validation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation. JAMA. 2001;286(2):180–7.

    Article  PubMed  Google Scholar 

  13. Conroy RM, Pyorala K, Fitzgerald AP, Sans S, Menotti A, De Backer G, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J. 2003;24(11):987–1003.

    Article  PubMed  CAS  Google Scholar 

  14. Graham I, Atar D, Borch-Johnsen K, Boysen G, Burell G, Cifkova R, et al. European guidelines on cardiovascular disease prevention in clinical practice: executive summary: Fourth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (Constituted by representatives of nine societies and by invited experts). Eur Heart J. 2007;28(19):2375–414.

    Article  PubMed  Google Scholar 

  15. Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, May M, Brindle P. Derivation and validation of QRISK, a new cardiovascular disease risk score for the United Kingdom: prospective open cohort study. BMJ. 2007;335(7611):136.

    Article  PubMed  Google Scholar 

  16. Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, Minhas R, Sheikh A, et al. Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2. BMJ. 2008;336(7659):1475–82.

    Article  PubMed  Google Scholar 

  17. Ridker PM, Paynter NP, Rifai N, Gaziano JM, Cook NR. C-reactive protein and parental history improve global cardiovascular risk prediction: the Reynolds Risk Score for men. Circulation. 2008;118(22):2243–51. 2244p following 2251.

    Article  PubMed  CAS  Google Scholar 

  18. Third Report of the National Cholesterol Education Program (NCEP). Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation. 2002;106(25):3143–421.

    Google Scholar 

  19. Diamond GA. What price perfection? Calibration and discrimination of clinical prediction models. J Clin Epidemiol. 1992;45(1):85–9.

    Article  PubMed  CAS  Google Scholar 

  20. Brindle P, Beswick A, Fahey T, Ebrahim S. Accuracy and impact of risk assessment in the primary prevention of cardiovascular disease: a systematic review. Heart. 2006;92(12):1752–9.

    Article  PubMed  CAS  Google Scholar 

  21. Hense HW. Risk factor scoring for coronary heart disease. BMJ. 2003;327(7426):1238–9.

    Article  PubMed  Google Scholar 

  22. Sailam V, Karalis DG, Agarwal A, Alani F, Galardi S, Covalesky V, et al. Prevalence of emerging cardiovascular risk factors in younger individuals with a family history of premature coronary heart disease and low Framingham risk score. Clin Cardiol. 2008;31(11):542–5.

    Article  PubMed  Google Scholar 

  23. Cavanaugh-Hussey MW, Berry JD, Lloyd-Jones DM. Who exceeds ATP-III risk thresholds? Systematic examination of the effect of varying age and risk factor levels in the ATP-III risk assessment tool. Prev Med. 2008;47(6):619–23.

    Article  PubMed  Google Scholar 

  24. Berry JD, Lloyd-Jones DM, Garside DB, Greenland P. Framingham risk score and prediction of coronary heart disease death in young men. Am Heart J. 2007;154(1):80–6.

    Article  PubMed  Google Scholar 

  25. Zethelius B, Berglund L, Sundstrom J, Ingelsson E, Basu S, Larsson A, et al. Use of multiple biomarkers to improve the prediction of death from cardiovascular causes. N Engl J Med. 2008;358(20):2107–16.

    Article  PubMed  CAS  Google Scholar 

  26. Stork S, Feelders RA, van den Beld AW, Steyerberg EW, Savelkoul HF, Lamberts SW, et al. Prediction of mortality risk in the elderly. Am J Med. 2006;119(6):519–25.

    Article  PubMed  Google Scholar 

  27. Wilson PW. Progressing from risk factors to omics. Circ Cardiovasc Genet. 2008;1(2):141–6.

    Article  PubMed  Google Scholar 

  28. Michos ED, Vasamreddy CR, Becker DM, Yanek LR, Moy TF, Fishman EK, et al. Women with a low Framingham risk score and a family history of premature coronary heart disease have a high prevalence of subclinical coronary atherosclerosis. Am Heart J. 2005;150(6):1276–81.

    Article  PubMed  Google Scholar 

  29. Naghavi M, Falk E, Hecht HS, Jamieson MJ, Kaul S, Berman D, et al. From vulnerable plaque to vulnerable patient—Part III: executive summary of the Screening for Heart Attack Prevention and Education (SHAPE) Task Force report. Am J Cardiol. 2006;98(2A):2H–15.

    Article  PubMed  Google Scholar 

  30. •• Polonsky TS, McClelland RL, Jorgensen NW, Bild DE, Burke GL, Guerci AD, Greenland P. Coronary artery calcium score and risk classification for coronary heart disease prediction. JAMA. 2010;303(16):1610–6. Using data from the Multi-Ethnic Study of Atherosclerosis, a multiethnic cohort, the addition of CACS was noted to improve the classification and reclassification of risk in patients without known cardiovascular disease.

    Article  PubMed  CAS  Google Scholar 

  31. Rumberger JA. Tomographic plaque imaging with CT: technical considerations and capabilities. Prog Cardiovasc Dis. 2003;46(2):123–34.

    Article  PubMed  Google Scholar 

  32. Horton KM, Post WS, Blumenthal RS, Fishman EK. Prevalence of significant noncardiac findings on electron-beam computed tomography coronary artery calcium screening examinations. Circulation. 2002;106(5):532–4.

    Article  PubMed  Google Scholar 

  33. Cassidy-Bushrow AE, Bielak LF, Sheedy II PF, Turner ST, Kullo IJ, Lin X, et al. Coronary artery calcification progression is heritable. Circulation. 2007;116(1):25–31.

    Article  PubMed  Google Scholar 

  34. Kramer CK, von Muhlen D, Gross JL, Barrett-Connor E. A prospective study of abdominal obesity and coronary artery calcium progression in older adults. J Clin Endocrinol Metab. 2009;94(12):5039–44.

    Article  PubMed  CAS  Google Scholar 

  35. Kramer CK, von Muhlen D, Gross JL, Laughlin GA, Barrett-Connor E. Blood pressure and fasting plasma glucose rather than metabolic syndrome predict coronary artery calcium progression: the Rancho Bernardo Study. Diabetes Care. 2009;32(1):141–6.

    Article  PubMed  CAS  Google Scholar 

  36. Shaw LJ, Raggi P, Schisterman E, Berman DS, Callister TQ. Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology. 2003;228(3):826–33.

    Article  PubMed  Google Scholar 

  37. Raggi P, Cooil B, Shaw LJ, Aboulhson J, Takasu J, Budoff M, et al. Progression of coronary calcium on serial electron beam tomographic scanning is greater in patients with future myocardial infarction. Am J Cardiol. 2003;92(7):827–9.

    Article  PubMed  Google Scholar 

  38. Wayhs R, Zelinger A, Raggi P. High coronary artery calcium scores pose an extremely elevated risk for hard events. J Am Coll Cardiol. 2002;39(2):225–30.

    Article  PubMed  Google Scholar 

  39. Arad Y, Goodman KJ, Roth M, Newstein D, Guerci AD. Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events: the St. Francis Heart Study. J Am Coll Cardiol. 2005;46(1):158–65.

    Article  PubMed  CAS  Google Scholar 

  40. Arad Y, Spadaro LA, Roth M, Newstein D, Guerci AD. Treatment of asymptomatic adults with elevated coronary calcium scores with atorvastatin, vitamin C, and vitamin E: the St. Francis Heart Study randomized clinical trial. J Am Coll Cardiol. 2005;46(1):166–72.

    Article  PubMed  CAS  Google Scholar 

  41. Anand DV, Lim E, Darko D, Bassett P, Hopkins D, Lipkin D, et al. Determinants of progression of coronary artery calcification in type 2 diabetes role of glycemic control and inflammatory/vascular calcification markers. J Am Coll Cardiol. 2007;50(23):2218–25.

    Article  PubMed  CAS  Google Scholar 

  42. Shaw LJ, Raggi P, Callister TQ, Berman DS. Prognostic value of coronary artery calcium screening in asymptomatic smokers and non-smokers. Eur Heart J. 2006;27(8):968–75.

    Article  PubMed  Google Scholar 

  43. Elias-Smale SE, Proenca RV, Koller MT, Kavousi M, van Rooij FJ, Hunink MG, et al. Coronary calcium score improves classification of coronary heart disease risk in the elderly: the Rotterdam study. J Am Coll Cardiol. 2010;56(17):1407–14.

    Article  PubMed  Google Scholar 

  44. Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358(13):1336–45.

    Article  PubMed  CAS  Google Scholar 

  45. Kondos GT, Hoff JA, Sevrukov A, Daviglus ML, Garside DB, Devries SS, et al. Electron-beam tomography coronary artery calcium and cardiac events: a 37-month follow-up of 5635 initially asymptomatic low- to intermediate-risk adults. Circulation. 2003;107(20):2571–6.

    Article  PubMed  Google Scholar 

  46. Budoff MJ, Shaw LJ, Liu ST, Weinstein SR, Mosler TP, Tseng PH, et al. Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J Am Coll Cardiol. 2007;49(18):1860–70.

    Article  PubMed  Google Scholar 

  47. O’Rourke RA, Brundage BH, Froelicher VF, Greenland P, Grundy SM, Hachamovitch R, et al. American College of Cardiology/American Heart Association Expert Consensus Document on electron-beam computed tomography for the diagnosis and prognosis of coronary artery disease. J Am Coll Cardiol. 2000;36(1):326–40.

    Article  PubMed  Google Scholar 

  48. •• Min JK, Lin FY, Gidseg DS, Weinsaft JW, Berman DS, Shaw LJ, Rozanski A, Callister TQ. Determinants of coronary calcium conversion among patients with a normal coronary calcium scan: what is the “warranty period” for remaining normal? J Am Coll Cardiol. 2010;55(11):1110–7. The authors demonstrated that individuals with a CACS of 0 have a low rate of conversion to an abnormal score over a 5-year period.

    Article  PubMed  Google Scholar 

  49. Becker A, Leber A, Becker C, Knez A. Predictive value of coronary calcifications for future cardiac events in asymptomatic individuals. Am Heart J. 2008;155(1):154–60.

    Article  PubMed  Google Scholar 

  50. • Sarwar A, Shaw LJ, Shapiro MD, Blankstein R, Hoffmann U, Cury RC, Abbara S, Brady TJ, Budoff MJ, Blumenthal RS, et al. Diagnostic and prognostic value of absence of coronary artery calcification. JACC Cardiovasc Imaging. 2009;2(6):675–88. Following a review of 85,000 asymptomatic and symptomatic patients from 13 studies, the absence of CAC is associated with a very low risk of future cardiovascular events during a mean follow-up of 51 months.

    Article  PubMed  Google Scholar 

  51. Blaha M, Budoff MJ, Shaw LJ, Khosa F, Rumberger JA, Berman D, et al. Absence of coronary artery calcification and all-cause mortality. JACC Cardiovasc Imaging. 2009;2(6):692–700.

    Article  PubMed  Google Scholar 

  52. Erbel R, Mohlenkamp S, Moebus S, Schmermund A, Lehmann N, Stang A, et al. Coronary risk stratification, discrimination, and reclassification improvement based on quantification of subclinical coronary atherosclerosis: the Heinz Nixdorf Recall study. J Am Coll Cardiol. 2010;56(17):1397–406.

    Article  PubMed  Google Scholar 

  53. Simmons RK, Sharp S, Boekholdt SM, Sargeant LA, Khaw KT, Wareham NJ, et al. Evaluation of the Framingham risk score in the European Prospective Investigation of Cancer-Norfolk cohort: does adding glycated hemoglobin improve the prediction of coronary heart disease events? Arch Intern Med. 2008;168(11):1209–16.

    Article  PubMed  Google Scholar 

  54. Melander O, Newton-Cheh C, Almgren P, Hedblad B, Berglund G, Engstrom G, et al. Novel and conventional biomarkers for prediction of incident cardiovascular events in the community. Jama. 2009;302(1):49–57.

    Article  PubMed  CAS  Google Scholar 

  55. •• Budoff MJ, Hokanson JE, Nasir K, Shaw LJ, Kinney GL, Chow D, Demoss D, Nuguri V, Nabavi V, Ratakonda R, et al. Progression of coronary artery calcium predicts all-cause mortality. JACC Cardiovasc Imaging. 2010;3(12):1229–36. The authors concluded that among asymptomatic individuals, CAC progression over an intersan time of 3.1 years added incremental value in predicting all-cause mortality over baseline score, demographics, and cardiovascular risk factors.

    Article  PubMed  Google Scholar 

  56. Raggi P, Callister TQ, Shaw LJ. Progression of coronary artery calcium and risk of first myocardial infarction in patients receiving cholesterol-lowering therapy. Arterioscler Thromb Vasc Biol. 2004;24(7):1272–7.

    Article  PubMed  CAS  Google Scholar 

  57. Raggi P, Cooil B, Ratti C, Callister TQ, Budoff M. Progression of coronary artery calcium and occurrence of myocardial infarction in patients with and without diabetes mellitus. Hypertension. 2005;46(1):238–43.

    Article  PubMed  CAS  Google Scholar 

  58. Ferencik M, Moselewski F, Ropers D, Hoffmann U, Baum U, Anders K, et al. Quantitative parameters of image quality in multidetector spiral computed tomographic coronary imaging with submillimeter collimation. Am J Cardiol. 2003;92(11):1257–62.

    Article  PubMed  Google Scholar 

  59. Flohr T, Bruder H, Stierstorfer K, Simon J, Schaller S, Ohnesorge B. New technical developments in multislice CT, part 2: sub-millimeter 16-slice scanning and increased gantry rotation speed for cardiac imaging. Rofo. 2002;174(8):1022–7.

    PubMed  CAS  Google Scholar 

  60. Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008;52(21):1724–32.

    Article  PubMed  Google Scholar 

  61. Meijboom WB, Meijs MF, Schuijf JD, Cramer MJ, Mollet NR, van Mieghem CA, et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol. 2008;52(25):2135–44.

    Article  PubMed  Google Scholar 

  62. Miller JM, Rochitte CE, Dewey M, Arbab-Zadeh A, Niinuma H, Gottlieb I, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. 2008;359(22):2324–36.

    Article  PubMed  CAS  Google Scholar 

  63. Pugliese F, Mollet NR, Runza G, van Mieghem C, Meijboom WB, Malagutti P, et al. Diagnostic accuracy of non-invasive 64-slice CT coronary angiography in patients with stable angina pectoris. Eur Radiol. 2006;16(3):575–82.

    Article  PubMed  Google Scholar 

  64. Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA. Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol. 2005;46(3):552–7.

    Article  PubMed  Google Scholar 

  65. Leschka S, Alkadhi H, Plass A, Desbiolles L, Grunenfelder J, Marincek B, et al. Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J. 2005;26(15):1482–7.

    Article  PubMed  Google Scholar 

  66. Leber AW, Knez A, von Ziegler F, Becker A, Nikolaou K, Paul S, et al. Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol. 2005;46(1):147–54.

    Article  PubMed  Google Scholar 

  67. Bachar GN, Atar E, Fuchs S, Dror D, Kornowski R. Prevalence and clinical predictors of atherosclerotic coronary artery disease in asymptomatic patients undergoing coronary multidetector computed tomography. Coron Artery Dis. 2007;18(5):353–60.

    Article  PubMed  Google Scholar 

  68. Romeo F, Leo R, Clementi F, Razzini C, Borzi M, Martuscelli E, et al. Multislice computed tomography in an asymptomatic high-risk population. Am J Cardiol. 2007;99(3):325–8.

    Article  PubMed  Google Scholar 

  69. Hwang Y, Kim Y, Chung IM, Ryu J, Park H. Coronary heart disease risk assessment and characterization of coronary artery disease using coronary CT angiography: comparison of asymptomatic and symptomatic groups. Clin Radiol. 2010;65(8):601–8.

    Article  PubMed  CAS  Google Scholar 

  70. Rivera JJ, Nasir K, Choi EK, Yoon YE, Chun EJ, Choi SI, et al. Detection of occult coronary artery disease in asymptomatic individuals with diabetes mellitus using non-invasive cardiac angiography. Atherosclerosis. 2009;203(2):442–8.

    Article  PubMed  CAS  Google Scholar 

  71. •• Choi EK, Choi SI, Rivera JJ, Nasir K, Chang SA, Chun EJ, Kim HK, Choi DJ, Blumenthal RS, Chang HJ. Coronary computed tomography angiography as a screening tool for the detection of occult coronary artery disease in asymptomatic individuals. J Am Coll Cardiol. 2008;52(5):357–65. This article reported on the non-negligible prevalence of occult CAD detected on CCTA.

    Article  PubMed  Google Scholar 

  72. Min JK, Shaw LJ, Devereux RB, Okin PM, Weinsaft JW, Russo DJ, et al. Prognostic value of multidetector coronary computed tomographic angiography for prediction of all-cause mortality. J Am Coll Cardiol. 2007;50(12):1161–70.

    Article  PubMed  Google Scholar 

  73. Gilard M, Le Gal G, Cornily JC, Vinsonneau U, Joret C, Pennec PY, et al. Midterm prognosis of patients with suspected coronary artery disease and normal multislice computed tomographic findings: a prospective management outcome study. Arch Intern Med. 2007;167(15):1686–9.

    Article  PubMed  Google Scholar 

  74. Min JK, Lin FY, Dunning AM, Delago A, Egan J, Shaw LJ, et al. Incremental prognostic significance of left ventricular dysfunction to coronary artery disease detection by 64-detector row coronary computed tomographic angiography for the prediction of all-cause mortality: results from a two-centre study of 5330 patients. Eur Heart J. 2010;31(10):1212–9.

    Article  PubMed  Google Scholar 

  75. Pundziute G, Schuijf JD, Jukema JW, Boersma E, de Roos A, van der Wall EE, et al. Prognostic value of multislice computed tomography coronary angiography in patients with known or suspected coronary artery disease. J Am Coll Cardiol. 2007;49(1):62–70.

    Article  PubMed  Google Scholar 

  76. • Russo V, Zavalloni A, Bacchi Reggiani ML, Buttazzi K, Gostoli V, Bartolini S, Fattori R. Incremental prognostic value of coronary CT angiography in patients with suspected coronary artery disease. Circ Cardiovasc Imaging. 2010;3(4):351–9. Multidetector CCTA in patients with suspected CAD was found to provide independent and incremental prognostic information compared with baseline clinical risk factors and calcium scoring.

    Article  PubMed  Google Scholar 

  77. Lin FY, Shaw LJ, Dunning AL, Labounty TM, Choi JH, Weinsaft JW, Gomez MJ, Delago AJ, Callister TQ, Berman DS, et al. Mortality risk in symptomatic patients with non-obstructive coronary artery disease: a prospective two-center study of 2,583 patients undergoing 64-detector row coronary computed tomographic angiography. J Am Coll Cardiol. 2011 (in press).

  78. Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2010;364(3):226–35.

    Article  Google Scholar 

  79. Motoyama S, Sarai M, Harigaya H, Anno H, Inoue K, Hara T, et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol. 2009;54(1):49–57.

    Article  PubMed  Google Scholar 

  80. • Hadamitzky M, Distler R, Meyer T, Hein F, Kastrati A, Martinoff S, Schomig A, Hausleiter J. Prognostic value of coronary computed tomographic angiography in comparison with calcium scoring and clinical risk scores. Circ Cardiovasc Imaging. 2011;4(1):16–23. In this paper CCTA compared to calcium scoring in patients with suspected CAD improved prediction of cardiac events (cardiac death, nonfatal MI, unstable angina requiring hospitalization, and coronary revascularization later than 90 days after CCTA) over and above conventional clinical risk scores.

    Article  PubMed  Google Scholar 

  81. •• Hulten EA, Carbonaro S, Petrillo SP, Mitchell JD, Villines TC. Prognostic value of cardiac computed tomography angiography a systematic review and meta-analysis. J Am Coll Cardiol. 2010. This analysis pooled outcomes from 18 studies with 9592 patients and determined that adverse cardiovascular events and death in patients with normal findings on CCTA angiography were rare.

  82. Abdulla J, Asferg C, Kofoed KF. Prognostic value of absence or presence of coronary artery disease determined by 64-slice computed tomography coronary angiography A systematic review and meta-analysis. Int J Cardiovasc Imaging. 2010. [Epub ahead of print].

  83. Min JK, Dunning A, Lin FY, et al. Age- and gender-related differences in all-cause mortality risk based upon coronary CT angiography findings: results from the international multicenter CONFIRM registry of 23,854 patients without known coronary artery disease. J Am Coll Cardiol. 2011, in press.

  84. Lobstein T, Baur L, Uauy R. Obesity in children and young people: a crisis in public health. Obes Rev. 2004;5 Suppl 1:4–104.

    Article  PubMed  Google Scholar 

  85. Ogden CL, Carroll MD, Curtin LR, Lamb MM, Flegal KM. Prevalence of high body mass index in US children and adolescents, 2007–2008. JAMA. 2010;303(3):242–9.

    Article  PubMed  CAS  Google Scholar 

  86. Kuklina EV, Yoon PW, Keenan NL. Prevalence of coronary heart disease risk factors and screening for high cholesterol levels among young adults, United States, 1999–2006. Ann Fam Med. 2010;8(4):327–33.

    Article  PubMed  Google Scholar 

  87. Haslam DW, James WP. Obesity. Lancet. 2005;366(9492):1197–209.

    Article  PubMed  Google Scholar 

  88. Freedman DS, Mei Z, Srinivasan SR, Berenson GS, Dietz WH. Cardiovascular risk factors and excess adiposity among overweight children and adolescents: the Bogalusa Heart Study. J Pediatr. 2007;150(1):12–7. e12.

    Article  PubMed  Google Scholar 

  89. Huang K, Zou CC, Yang XZ, Chen XQ, Liang L. Carotid intima-media thickness and serum endothelial marker levels in obese children with metabolic syndrome. Arch Pediatr Adolesc Med. 2010;164(9):846–51.

    Article  PubMed  Google Scholar 

  90. Urbina EM, Kimball TR, McCoy CE, Khoury PR, Daniels SR, Dolan LM. Youth with obesity and obesity-related type 2 diabetes mellitus demonstrate abnormalities in carotid structure and function. Circulation. 2009;119(22):2913–9.

    Article  PubMed  CAS  Google Scholar 

  91. Juonala M, Jarvisalo MJ, Maki-Torkko N, Kahonen M, Viikari JS, Raitakari OT. Risk factors identified in childhood and decreased carotid artery elasticity in adulthood: the Cardiovascular Risk in Young Finns Study. Circulation. 2005;112(10):1486–93.

    Article  PubMed  Google Scholar 

  92. Raitakari OT, Juonala M, Kahonen M, Taittonen L, Laitinen T, Maki-Torkko N, et al. Cardiovascular risk factors in childhood and carotid artery intima-media thickness in adulthood: the Cardiovascular Risk in Young Finns Study. JAMA. 2003;290(17):2277–83.

    Article  PubMed  CAS  Google Scholar 

  93. Johnson KM, Dowe DA, Brink JA. Traditional clinical risk assessment tools do not accurately predict coronary atherosclerotic plaque burden: a CT angiography study. AJR Am J Roentgenol. 2009;192(1):235–43.

    Article  PubMed  Google Scholar 

  94. Akosah KO, Schaper A, Cogbill C, Schoenfeld P. Preventing myocardial infarction in the young adult in the first place: how do the National Cholesterol Education Panel III guidelines perform? J Am Coll Cardiol. 2003;41(9):1475–9.

    Article  PubMed  Google Scholar 

  95. Loria CM, Liu K, Lewis CE, Hulley SB, Sidney S, Schreiner PJ, et al. Early adult risk factor levels and subsequent coronary artery calcification: the CARDIA Study. J Am Coll Cardiol. 2007;49(20):2013–20.

    Article  PubMed  Google Scholar 

  96. Lee TC, O’Malley PG, Feuerstein I, Taylor AJ. The prevalence and severity of coronary artery calcification on coronary artery computed tomography in black and white subjects. J Am Coll Cardiol. 2003;41(1):39–44.

    Article  PubMed  Google Scholar 

  97. Taylor AJ, Feuerstein I, Wong H, Barko W, Brazaitis M, O’Malley PG. Do conventional risk factors predict subclinical coronary artery disease? Results from the prospective army coronary calcium project. Am Heart J. 2001;141(3):463–8.

    Article  PubMed  CAS  Google Scholar 

  98. Ha EJ, Kim Y, Cheung JY, Shim SS. Coronary artery disease in asymptomatic young adults: its prevalence according to coronary artery disease risk stratification and the CT characteristics. Korean J Radiol. 2010;11(4):425–32.

    Article  PubMed  Google Scholar 

Download references

Disclosure

Conflicts of interest: S.R. Wilson: none; F.Y. Lin: none; J.K. Min: is on the medical advisory board and speakers’ bureau for GE Healthcare, and receives research support from GE Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James K. Min.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, S.R., Lin, F.Y. & Min, J.K. Role of Coronary Artery Calcium Score and Coronary CT Angiography in the Diagnosis and Risk Stratification of Individuals with Suspected Coronary Artery Disease. Curr Cardiol Rep 13, 271–279 (2011). https://doi.org/10.1007/s11886-011-0191-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-011-0191-4

Keywords

Navigation