Skip to main content

Advertisement

Log in

Multiple Adipose Depots Increase Cardiovascular Risk via Local and Systemic Effects

  • Clinical Trials and Their Interpretations (J Plutzky, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Adipose tissue modifies the development of cardiovascular disease in a complex manner: obesity is a major risk factor, especially when accompanied by a central fat distribution. For that reason the characteristics of visceral adipose tissue have attracted most of the research interest thus far, and measurement of waist circumference is now recommended for everyday clinical practice. However, the direct, causative role of visceral fat in cardiometabolic disease remains to be established. Epidemiological and clinical studies show that accumulation of fat subcutaneously, in the gluteofemoral area, is protective against cardiovascular disease, but the exact molecular mechanisms remain unclear. In the last few years, imaging has allowed the study of smaller fat depots that may interact locally with important tissues: epicardial fat with the myocardium, perivascular fat with the vessel wall and the developing atherosclerotic plaque, and renal sinus fat with the renal artery. Unraveling the heterogeneous fat distribution and metabolic phenotypes in human obesity will facilitate optimal assessment of cardiovascular risk in overweight and obese individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Berrington de Gonzalez A, Hartge P, Cerhan JR, et al. Body-mass index and mortality among 1.46 million white adults. N Engl J Med. 2010;363:2211–9.

    Article  PubMed  CAS  Google Scholar 

  2. Samocha-Bonet D, Chisholm DJ, Tonks K, Campbell LV, Greenfield JR. Insulin-sensitive obesity in humans - a 'favorable fat' phenotype? Trends Endocrinol Metab. 2012;23:116–24.

    Article  PubMed  CAS  Google Scholar 

  3. Cinti S. The adipose organ: morphological perspectives of adipose tissues. Proc Nutr Soc. 2001;60:319–28.

    Article  PubMed  CAS  Google Scholar 

  4. Lee MJ, Wu Y, Fried SK. Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications. Mol Aspects Med. 2013;34:1–11.

    Article  PubMed  CAS  Google Scholar 

  5. Vague J. The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease. Am J Clin Nutr. 1956;4:20–34.

    PubMed  CAS  Google Scholar 

  6. Tchernof A, Després JP. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013;93:359–404.

    Article  PubMed  CAS  Google Scholar 

  7. Wormser D, Kaptoge S, Di Angelantonio E, et al. Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies. Lancet. 2011;377:1085–95.

    PubMed  Google Scholar 

  8. Czernichow S, Kengne AP, Stamatakis E, Hamer M, Batty GD. Body mass index, waist circumference and waist-hip ratio: which is the better discriminator of cardiovascular disease mortality risk?: evidence from an individual-participant meta-analysis of 82 864 participants from nine cohort studies. Obes Rev. 2011;12:680–7.

    PubMed  CAS  Google Scholar 

  9. Bouchard C. BMI, fat mass, abdominal adiposity and visceral fat: where is the 'beef'? Int J Obes (Lond). 2007;31:1552–3.

    Article  CAS  Google Scholar 

  10. Chrysant SG, Chrysant GS. New insights into the true nature of the obesity paradox and the lower cardiovascular risk. J Am Soc Hypertens. 2013;7:85–94.

    Article  PubMed  Google Scholar 

  11. • Coutinho T, Goel K, Corrêa de Sá D, et al. Central obesity and survival in subjects with coronary artery disease: a systematic review of the literature and collaborative analysis with individual subject data. J Am Coll Cardiol. 2011;57:1877–86. This study shows that there is no “central obesity paradox,” i.e., central fat distribution is associated with increased morbidity/mortality in subjects with established cardiovascular disease.

    Article  PubMed  Google Scholar 

  12. Coutinho T, Goel K, Corrêa de Sá D, et al. Combining body mass index with measures of central obesity in the assessment of mortality in subjects with coronary disease: role of "normal weight central obesity". J Am Coll Cardiol. 2013;61:553–60.

    Article  PubMed  Google Scholar 

  13. • Cameron AJ, Magliano DJ, Söderberg S. A systematic review of the impact of including both waist and hip circumference in risk models for cardiovascular diseases, diabetes and mortality. Obes Rev. 2013;14:86–94. This is a recent meta-analysis illustrating the independent relationship between peripheral fat distribution and morbidity/mortality.

    Article  PubMed  CAS  Google Scholar 

  14. Heitmann BL, Lissner L. Hip hip hurrah! Hip size inversely related to heart disease and total mortality. Obes Rev. 2011;12:478–81.

    Article  PubMed  CAS  Google Scholar 

  15. Manolopoulos KN, Karpe F, Frayn KN. Gluteofemoral body fat as a determinant of metabolic health. Int J Obes (Lond). 2010;34:949–59.

    Article  CAS  Google Scholar 

  16. Calori G, Lattuada G, Piemonti L, et al. Prevalence, metabolic features, and prognosis of metabolically healthy obese Italian individuals: the Cremona Study. Diabetes Care. 2011;34:210–5.

    Article  PubMed  Google Scholar 

  17. Appleton SL, Seaborn CJ, Visvanathan R, et al. Diabetes and cardiovascular disease outcomes in the metabolically healthy obese phenotype: a cohort study. Diabetes Care. 2013;36:2388–94.

    Article  PubMed  Google Scholar 

  18. Vega GL, Adams-Huet B, Peshock R, et al. Influence of body fat content and distribution on variation in metabolic risk. J Clin Endocrinol Metab. 2006;91:4459–66.

    Article  PubMed  CAS  Google Scholar 

  19. Ogorodnikova AD, Kim M, McGinn AP, et al. Incident cardiovascular disease events in metabolically benign obese individuals. Obesity (Silver Spring). 2012;20:651–9.

    Article  Google Scholar 

  20. Hamer M, Stamatakis E. Metabolically healthy obesity and risk of all-cause and cardiovascular disease mortality. J Clin Endocrinol Metab. 2012;97:2482–8.

    Article  PubMed  CAS  Google Scholar 

  21. Ortega FB, Lee DC, Katzmarzyk PT, et al. The intriguing metabolically healthy but obese phenotype: cardiovascular prognosis and role of fitness. Eur Heart J. 2013;34:389–97.

    Article  PubMed  Google Scholar 

  22. Arnlöv J, Ingelsson E, Sundström J, Lind L. Impact of body mass index and the metabolic syndrome on the risk of cardiovascular disease and death in middle-aged men. Circulation. 2010;121:230–6.

    Article  PubMed  Google Scholar 

  23. •• Cornier MA, Després JP, Davis N, et al. Assessing adiposity: a scientific statement from the American Heart Association. Circulation. 2011;124:1996–2019. This is a recent review of the epidemiology of obesity and its related comorbidities, together with issues and methods available for assessing adiposity in adults. It concludes with practical recommendations for the clinician in practice towards identifying more at-risk overweight/obese individuals.

    Article  PubMed  Google Scholar 

  24. Katzmarzyk PT, Bray GA, Greenway FL, et al. Ethnic-specific BMI and waist circumference thresholds. Obesity (Silver Spring). 2011;19:1272–8.

    Article  CAS  Google Scholar 

  25. Katzmarzyk PT, Heymsfield SB, Bouchard C. Clinical utility of visceral adipose tissue for the identification of cardiometabolic risk in white and African American adults. Am J Clin Nutr. 2013;97:480–6.

    Article  PubMed  CAS  Google Scholar 

  26. Amato MC, Giordano C, Galia M, et al. Visceral adiposity index: a reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care. 2010;33:920–2.

    Article  PubMed  Google Scholar 

  27. Knowles KM, Paiva LL, Sanchez SE, et al. Waist circumference, body mass index, and other measures of adiposity in predicting cardiovascular disease risk factors among Peruvian adults. Int J Hypertens. 2011;2011:931402.

    PubMed  CAS  Google Scholar 

  28. Mohammadreza B, Farzad H, Davoud K, Fereidoun PA. Prognostic significance of the complex "visceral adiposity index" vs. simple anthropometric measures: Tehran lipid and glucose study. Cardiovasc Diabetol. 2012;11:20.

    Article  PubMed  Google Scholar 

  29. Al-Daghri NM, Al-Attas OS, Alokail MS, et al. Visceral adiposity index is highly associated with adiponectin values and glycaemic disturbances. Eur J Clin Invest. 2013;43:183–9.

    Article  PubMed  CAS  Google Scholar 

  30. Zhang X, Shu XO, Li H, et al. Visceral adiposity and risk of coronary heart disease in relatively lean Chinese adults. Int J Cardiol. 2013. doi:10.1016/j.ijcard.2013.01.275.

    Google Scholar 

  31. Arsenault BJ, Lemieux I, Després JP, et al. The hypertriglyceridemic-waist phenotype and the risk of coronary artery disease: results from the EPIC-Norfolk prospective population study. CMAJ. 2010;182:1427–32.

    Article  PubMed  Google Scholar 

  32. de Graaf FR, Schuijf JD, Scholte AJ, et al. Usefulness of hypertriglyceridemic waist phenotype in type 2 diabetes mellitus to predict the presence of coronary artery disease as assessed by computed tomographic coronary angiography. Am J Cardiol. 2010;106:1747–53.

    Article  PubMed  Google Scholar 

  33. Blackburn P, Lemieux I, Lamarche B, et al. Hypertriglyceridemic waist: a simple clinical phenotype associated with coronary artery disease in women. Metabolism. 2012;61:56–64.

    Article  PubMed  CAS  Google Scholar 

  34. Bergman RN, Stefanovski D, Buchanan TA, et al. A better index of body adiposity. Obesity (Silver Spring). 2011;19:1083–9.

    Article  Google Scholar 

  35. Melmer A, Lamina C, Tschoner A, et al. Body adiposity index and other indexes of body composition in the SAPHIR study: association with cardiovascular risk factors. Obesity (Silver Spring). 2013;21:775–81. doi:10.1002/oby.20289.

    Article  CAS  Google Scholar 

  36. Moliner-Urdiales D, Artero EG, Lee DC, et al. Body adiposity index and all-cause and cardiovascular disease mortality in men. Obesity (Silver Spring). 2013. doi:10.1002/oby.20399.

    Google Scholar 

  37. Ashwell M, Gunn P, Gibson S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. Obes Rev. 2012;13:275–86.

    Article  PubMed  CAS  Google Scholar 

  38. Sluik D, Boeing H, Montonen J, et al. Associations between general and abdominal adiposity and mortality in individuals with diabetes mellitus. Am J Epidemiol. 2011;174:22–34.

    Article  PubMed  Google Scholar 

  39. Trefethen LN. New BMI (new body mass index). http://people.maths.ox.ac.uk/trefethen/bmi.html (2013). Accessed 4 Apr 2013.

  40. Fox CS, Massaro JM, Hoffmann U, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007;116:39–48.

    Article  PubMed  Google Scholar 

  41. Preis SR, Massaro JM, Robins SJ, et al. Abdominal subcutaneous and visceral adipose tissue and insulin resistance in the Framingham Heart Study. Obesity (Silver Spring). 2010;18:2191–8.

    Article  Google Scholar 

  42. Smith JD, Borel AL, Nazare JA, et al. Visceral adipose tissue indicates the severity of cardiometabolic risk in patients with and without type 2 diabetes: results from the INSPIRE ME IAA study. J Clin Endocrinol Metab. 2012;97:1517–25.

    Article  PubMed  CAS  Google Scholar 

  43. Kaess BM, Pedley A, Massaro JM, et al. The ratio of visceral to subcutaneous fat, a metric of body fat distribution, is a unique correlate of cardiometabolic risk. Diabetologia. 2012;55:2622–30.

    Article  PubMed  CAS  Google Scholar 

  44. Nazare JA, Smith JD, Borel AL, et al. Ethnic influences on the relations between abdominal subcutaneous and visceral adiposity, liver fat, and cardiometabolic risk profile: the International Study of Prediction of Intra-Abdominal Adiposity and Its Relationship With Cardiometabolic Risk/Intra-Abdominal Adiposity. Am J Clin Nutr. 2012;96:714–26.

    Article  PubMed  CAS  Google Scholar 

  45. Lear SA, Chockalingam A, Kohli S, Richardson CG, Humphries KH. Elevation in cardiovascular disease risk in South Asians is mediated by differences in visceral adipose tissue. Obesity (Silver Spring). 2012;20:1293–300.

    Article  CAS  Google Scholar 

  46. Ding J, Hsu FC, Harris TB, et al. The association of pericardial fat with incident coronary heart disease: the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr. 2009;90:499–504.

    Article  PubMed  CAS  Google Scholar 

  47. Huang G, Wang D, Zeb I, et al. Intra-thoracic fat, cardiometabolic risk factors, and subclinical cardiovascular disease in healthy, recently menopausal women screened for the Kronos Early Estrogen Prevention Study (KEEPS). Atherosclerosis. 2012;221:198–205.

    Article  PubMed  CAS  Google Scholar 

  48. Mahabadi AA, Massaro JM, Rosito GA, et al. Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: the Framingham Heart Study. Eur Heart J. 2009;30:850–6.

    Article  PubMed  Google Scholar 

  49. Thanassoulis G, Massaro JM, Hoffmann U, et al. Prevalence, distribution, and risk factor correlates of high pericardial and intrathoracic fat depots in the Framingham Heart Study. Circ Cardiovasc Imaging. 2010;3:559–66.

    Article  PubMed  Google Scholar 

  50. Britton KA, Pedley A, Massaro JM, et al. Prevalence, distribution, and risk factor correlates of high thoracic periaortic fat in the Framingham Heart Study. J Am Heart Assoc. 2012;1:e004200.

    Article  PubMed  Google Scholar 

  51. Yerramasu A, Dey D, Venuraju S, et al. Increased volume of epicardial fat is an independent risk factor for accelerated progression of sub-clinical coronary atherosclerosis. Atherosclerosis. 2012;220:223–30.

    Article  PubMed  CAS  Google Scholar 

  52. Nakanishi R, Rajani R, Cheng VY, et al. Increase in epicardial fat volume is associated with greater coronary artery calcification progression in subjects at intermediate risk by coronary calcium score: a serial study using non-contrast cardiac CT. Atherosclerosis. 2011;218:363–8.

    Article  PubMed  CAS  Google Scholar 

  53. Albuquerque FN, Somers VK, Blume G, et al. Usefulness of epicardial adipose tissue as predictor of cardiovascular events in patients with coronary artery disease. Am J Cardiol. 2012;110:1100–5.

    Article  PubMed  Google Scholar 

  54. •• Mahabadi AA, Berg MH, Lehmann N, et al. Association of epicardial fat with cardiovascular risk factors and incident myocardial infarction in the general population: the Heinz Nixdorf Recall Study. J Am Coll Cardiol. 2013;61:1388–95. This prospective study shows that EAT volume is associated with fatal and nonfatal coronary events in the general population independently of traditional cardiovascular risk factors.

    Article  PubMed  Google Scholar 

  55. Chughtai HL, Morgan TM, Rocco M, et al. Renal sinus fat and poor blood pressure control in middle-aged and elderly individuals at risk for cardiovascular events. Hypertension. 2010;56:901–6.

    Article  PubMed  CAS  Google Scholar 

  56. Foster MC, Hwang SJ, Porter SA, et al. Fatty kidney, hypertension, and chronic kidney disease: the Framingham Heart Study. Hypertension. 2011;58:784–90.

    Article  PubMed  CAS  Google Scholar 

  57. Janiszewski PM, Saunders TJ, Ross R. Breast volume is an independent predictor of visceral and ectopic fat in premenopausal women. Obesity (Silver Spring). 2010;18:1183–7.

    Article  Google Scholar 

  58. Schautz B, Later W, Heller M, Müller MJ, Bosy-Westphal A. Associations between breast adipose tissue, body fat distribution and cardiometabolic risk in women: cross-sectional data and weight-loss intervention. Eur J Clin Nutr. 2011;65:784–90.

    Article  PubMed  CAS  Google Scholar 

  59. Carobbio S, Rodriguez-Cuenca S, Vidal-Puig A. Origins of metabolic complications in obesity: ectopic fat accumulation. The importance of the qualitative aspect of lipotoxicity. Curr Opin Clin Nutr Metab Care. 2011;14:520–6.

    Article  PubMed  CAS  Google Scholar 

  60. Garg A. Lipodystrophies: genetic and acquired body fat disorders. J Clin Endocrinol Metab. 2011;96:3313–25.

    Article  PubMed  CAS  Google Scholar 

  61. McLaughlin TM, Liu T, Yee G, et al. Pioglitazone increases the proportion of small cells in human abdominal subcutaneous adipose tissue. Obesity (Silver Spring). 2010;18:926–31.

    Article  CAS  Google Scholar 

  62. Berg AH, Scherer PE. Adipose tissue, inflammation, and cardiovascular disease. Circ Res. 2005;96:939–49.

    Article  PubMed  CAS  Google Scholar 

  63. Mattu HS, Randeva HS. Role of adipokines in cardiovascular disease. J Endocrinol. 2013;216:T17–36.

    Article  PubMed  CAS  Google Scholar 

  64. Turer AT, Khera A, Ayers CR, et al. Adipose tissue mass and location affect circulating adiponectin levels. Diabetologia. 2011;54:2515–24.

    Article  PubMed  CAS  Google Scholar 

  65. Kizer JR, Benkeser D, Arnold AM, et al. Associations of total and high-molecular-weight adiponectin with all-cause and cardiovascular mortality in older persons: the Cardiovascular Health Study. Circulation. 2012;126:2951–61.

    Article  PubMed  CAS  Google Scholar 

  66. Wilson SR, Sabatine MS, Wiviott SD, et al. Assessment of adiponectin and the risk of recurrent cardiovascular events in patients presenting with an acute coronary syndrome: observations from the Pravastatin or Atorvastatin Evaluation and Infection Trial-Thrombolysis in Myocardial Infarction 22 (PROVE IT-TIMI 22). Am Heart J. 2011;161:1147–55.

    Article  PubMed  CAS  Google Scholar 

  67. Hascoet S, Elbaz M, Bongard V, et al. Adiponectin and long-term mortality in coronary artery disease participants and controls. Arterioscler Thromb Vasc Biol. 2013;33:e19–29.

    Article  PubMed  CAS  Google Scholar 

  68. Cheng X, Folco EJ, Shimizu K, Libby P. Adiponectin induces pro-inflammatory programs in human macrophages and CD4+ T cells. J Biol Chem. 2012;287:36896–904.

    Article  PubMed  CAS  Google Scholar 

  69. Yamauchi T, Kadowaki T. Physiological and pathophysiological roles of adiponectin and adiponectin receptors in the integrated regulation of metabolic and cardiovascular diseases. Int J Obes (Lond). 2008;32:S13–8.

    Article  CAS  Google Scholar 

  70. Wang ZV, Scherer PE. Adiponectin, cardiovascular function, and hypertension. Hypertension. 2008;51:8–14.

    Article  PubMed  CAS  Google Scholar 

  71. Aprahamian TR, Sam F. Adiponectin in cardiovascular inflammation and obesity. Int J Inflam. 2011;2011:376909.

    PubMed  Google Scholar 

  72. Björntorp P. "Portal" adipose tissue as a generator of risk factors for cardiovascular disease and diabetes. Arteriosclerosis. 1990;10:493–6.

    Article  PubMed  Google Scholar 

  73. Nielsen S, Guo Z, Johnson CM, Hensrud DD, Jensen MD. Splanchnic lipolysis in human obesity. J Clin Invest. 2004;113:1582–8.

    PubMed  CAS  Google Scholar 

  74. Frayn KN. Visceral fat and insulin resistance – causative or correlative? Br J Nutr. 2000;83 Suppl 1:S71–7.

    PubMed  CAS  Google Scholar 

  75. Fontana L, Eagon JC, Trujillo ME, Scherer PE, Klein S. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes. 2007;56:1010–3.

    Article  PubMed  CAS  Google Scholar 

  76. Karastergiou K, Evans I, Ogston N, et al. Epicardial adipokines in obesity and coronary artery disease induce atherogenic changes in monocytes and endothelial cells. Arterioscler Thromb Vasc Biol. 2010;30:1340–6.

    Article  PubMed  CAS  Google Scholar 

  77. Greulich S, Maxhera B, Vandenplas G, et al. Secretory products from epicardial adipose tissue of patients with type 2 diabetes mellitus induce cardiomyocyte dysfunction. Circulation. 2012;126:2324–34.

    Article  PubMed  CAS  Google Scholar 

  78. Venteclef N, Guglielmi V, Balse E, et al. Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines. Eur Heart J. 2013. doi:10.1093/eurheartj/eht099.

  79. Lee YC, Chang HH, Chiang CL, et al. Role of perivascular adipose tissue-derived methyl palmitate in vascular tone regulation and pathogenesis of hypertension. Circulation. 2011;124:1160–71.

    Article  PubMed  Google Scholar 

  80. Goossens GH, Bizzarri A, Venteclef N, et al. Increased adipose tissue oxygen tension in obese compared with lean men is accompanied by insulin resistance, impaired adipose tissue capillarization, and inflammation. Circulation. 2011;124:67–76.

    Article  PubMed  CAS  Google Scholar 

  81. Gealekman O, Guseva N, Hartigan C, et al. Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation. 2011;123:186–94.

    Article  PubMed  Google Scholar 

  82. • Chang L, Villacorta L, Li R, et al. Loss of perivascular adipose tissue on peroxisome proliferator-activated receptor-γ deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis. Circulation. 2012;126:1067–78. This study shows that murine perivascular adipose tissue has features of brown fat and that loss of this depot results in impaired vascular thermoregulation and promotes atherosclerosis.

    Article  PubMed  CAS  Google Scholar 

  83. Fabbrini E, Magkos F, Mohammed BS, et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc Natl Acad Sci U S A. 2009;106:15430–5.

    Article  PubMed  CAS  Google Scholar 

  84. •• Fabbrini E, Tamboli RA, Magkos F, et al. Surgical removal of omental fat does not improve insulin sensitivity and cardiovascular risk factors in obese adults. Gastroenterology. 2010;139:448–55. In this randomized controlled trial, a decrease in VAT mass through omentectomy, alone or in combination with Roux-en-Y gastric bypass surgery, did not improve insulin sensitivity in obese patients.

    Article  PubMed  Google Scholar 

  85. Herrera MF, Pantoja JP, Velázquez-Fernández D, et al. Potential additional effect of omentectomy on metabolic syndrome, acute-phase reactants, and inflammatory mediators in grade III obese patients undergoing laparoscopic Roux-en-Y gastric bypass: a randomized trial. Diabetes Care. 2010;33:1413–8.

    Article  PubMed  CAS  Google Scholar 

  86. Dillard TH, Purnell JQ, Smith MD, et al. Omentectomy added to Roux-en-Y gastric bypass surgery: a randomized, controlled trial. Surg Obes Relat Dis. 2011;9:269–75.

    Article  PubMed  Google Scholar 

  87. Tamboli RA, Hajri T, Jiang A, et al. Reduction in inflammatory gene expression in skeletal muscle from Roux-en-Y gastric bypass patients randomized to omentectomy. PLoS One. 2011;6:e28577.

    Article  PubMed  CAS  Google Scholar 

  88. Wu J, Ye H, Wang Y, et al. Comparative study of laparoscopic sleeve gastrectomy with and without partial enterectomy and omentectomy. Surg Obes Relat Dis. 2012;8:275–80.

    Article  PubMed  Google Scholar 

  89. Dunn JP, Abumrad NN, Breitman I, et al. Hepatic and peripheral insulin sensitivity and diabetes remission at 1 month after Roux-en-Y gastric bypass surgery in patients randomized to omentectomy. Diabetes Care. 2012;35:137–42.

    Article  PubMed  CAS  Google Scholar 

  90. Lima MM, Pareja JC, Alegre SM, et al. Visceral fat resection in humans: effect on insulin sensitivity, beta-cell function, adipokines and inflammatory markers. Obesity (Silver Spring). 2013;21:E182–9. doi:10.1002/oby.20030.

    Article  CAS  Google Scholar 

  91. Sdralis E, Argentou M, Mead N, et al. A prospective randomized study comparing patients with morbid obesity submitted to sleeve gastrectomy with or without omentectomy. Obes Surg. 2013;23:965–71.

    Article  PubMed  Google Scholar 

  92. Romaguera D, Norat T, Mouw T, et al. Adherence to the Mediterranean diet is associated with lower abdominal adiposity in European men and women. J Nutr. 2009;139:1728–37.

    Article  PubMed  CAS  Google Scholar 

  93. Romaguera D, Ängquist L, Du H, et al. Food composition of the diet in relation to changes in waist circumference adjusted for body mass index. PLoS One. 2011;6:e23384.

    Article  PubMed  CAS  Google Scholar 

  94. • Estruch R, Ros E, Salas-Salvadó J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368:1279–90. This is a randomized controlled trial with 7,447 participants at high risk of cardiovascular disease assigned to two Mediterranean diets or a control diet. The study was terminated prematurely owing to the protective effect of the Mediterranean diet on major cardiovascular events.

    Article  PubMed  CAS  Google Scholar 

  95. de Souza RJ, Bray GA, Carey VJ, et al. Effects of 4 weight-loss diets differing in fat, protein, and carbohydrate on fat mass, lean mass, visceral adipose tissue, and hepatic fat: results from the POUNDS LOST trial. Am J Clin Nutr. 2012;95:614–25.

    Article  PubMed  CAS  Google Scholar 

  96. Ismail I, Keating SE, Baker MK, Johnson NA. A systematic review and meta-analysis of the effect of aerobic vs. resistance exercise training on visceral fat. Obes Rev. 2012;13:68–91.

    Article  PubMed  CAS  Google Scholar 

  97. Vissers D, Hens W, Taeymans J, et al. The effect of exercise on visceral adipose tissue in overweight adults: a systematic review and meta-analysis. PLoS One. 2013;8:e56415.

    Article  PubMed  CAS  Google Scholar 

  98. Murphy JC, McDaniel JL, Mora K, et al. Preferential reductions in intermuscular and visceral adipose tissue with exercise-induced weight loss compared with calorie restriction. J Appl Physiol. 2012;112:79–85.

    Article  PubMed  Google Scholar 

  99. Hunter GR, Brock DW, Byrne NM, et al. Exercise training prevents regain of visceral fat for 1 year following weight loss. Obesity (Silver Spring). 2010;18:690–5.

    Article  Google Scholar 

  100. Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2007;293(2):E444–52.

    Article  PubMed  CAS  Google Scholar 

  101. Cypess AM, White AP, Vernochet C, Schulz TJ, Xue R, Sass CA, et al. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat Med. 2013;19(5):635–9.

    Article  PubMed  CAS  Google Scholar 

  102. Wu J, Boström P, Sparks LM, Ye L, Choi JH, Giang AH, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150(2):366–76. doi:10.1016/j.cell.2012.05.016.

    Article  PubMed  CAS  Google Scholar 

  103. Ouellet V, Routhier-Labadie A, Bellemare W, Lakhal-Chaieb L, Turcotte E, Carpentier AC, et al. Outdoor temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake activity of 18F-FDG-detected BAT in humans. J Clin Endocrinol Metab. 2011;96(1):192–9.

    Article  PubMed  CAS  Google Scholar 

  104. Vijgen GH, Bouvy ND, Teule GJ, Brans B, Hoeks J, Schrauwen P, et al. Increase in brown adipose tissue activity after weight loss in morbidly obese subjects. J Clin Endocrinol Metab. 2012;97:E1229–33.

    Article  PubMed  CAS  Google Scholar 

  105. Wu J, Cohen P, Spiegelman BM. Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev. 2013;27(3):234–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH DK080448 and P30 DK046200 (to S.K.F.) and the Evans Center for Interdisciplinary Biomedical Research Affinity Research Collaborative on Sex Differences in Adipose Tissue at Boston University School of Medicine.

Conflict of Interest

Kalypso Karastergiou and Susan K. Fried declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan K. Fried.

Additional information

This article is part of the Topical Collection on Clinical Trials and Their Interpretations

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karastergiou, K., Fried, S.K. Multiple Adipose Depots Increase Cardiovascular Risk via Local and Systemic Effects. Curr Atheroscler Rep 15, 361 (2013). https://doi.org/10.1007/s11883-013-0361-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-013-0361-5

Keywords

Navigation