Skip to main content
Log in

Effects of Diet on High-Density Lipoprotein Cholesterol

  • Nutrition (William S. Harris, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Multiple dietary factors have been shown to increase high-density lipoprotein cholesterol (HDL-C) concentrations, and HDL-C has been inversely associated with coronary heart disease (CHD) risk. Replacement of dietary carbohydrate with polyunsaturated, monounsaturated and saturated fat has been associated with progressively greater increases in HDL-C (7–12%) in addition to other lipid changes. Added sugars, but not high glycemic carbohydrates, have been associated with decreased HDL-C. Alcohol consumption has been associated with increased HDL-C (9.2%) independent of changes in other measured lipids. Modest effects on HDL-C (~4–5%) among other lipid and non-lipid CHD risk factors have also been observed with weight loss by dieting, omega-3 fatty acids, and a Mediterranean diet pattern. The CHD benefit of increasing HDL-C is unclear given the inconsistent evidence from HDL-raising pharmacologic trials. Furthermore, pleiotropic effects of diet preclude attribution of CHD benefit specifically to HDL-C. Investigation into functional or other properties of HDL may lend further insight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lewis GF, Rader DJ. New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res. 2005;96(12):1221–32.

    Article  PubMed  CAS  Google Scholar 

  2. Assmann G, Gotto Jr AM. HDL cholesterol and protective factors in atherosclerosis. Circulation. 2004;109(23 Suppl 1):III8-14.

    PubMed  Google Scholar 

  3. Medicine) IIo. Perspectives on biomarker and surrogate endpoint evaluation: Discussion forum summary. In: Medicine Io, editor. Washington, D.C.: The National Academies Press; 2011.

  4. Gordon DJ, Rifkind BM. High-density lipoprotein—the clinical implications of recent studies. N Engl J Med. 1989;321(19):1311–6.

    Article  PubMed  CAS  Google Scholar 

  5. Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am J Med. 1977;62(5):707–14.

    Article  PubMed  CAS  Google Scholar 

  6. Stampfer MJ, Sacks FM, Salvini S, Willett WC, Hennekens CH. A prospective study of cholesterol, apolipoproteins, and the risk of myocardial infarction. N Engl J Med. 1991;325(6):373–81.

    Article  PubMed  CAS  Google Scholar 

  7. Jacobs Jr DR, Mebane IL, Bangdiwala SI, Criqui MH, Tyroler HA. High density lipoprotein cholesterol as a predictor of cardiovascular disease mortality in men and women: the follow-up study of the Lipid Research Clinics Prevalence Study. Am J Epidemiol. 1990;131(1):32–47.

    PubMed  Google Scholar 

  8. Gordon DJ, Probstfield JL, Garrison RJ, Neaton JD, Castelli WP, Knoke JD, et al. High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation. 1989;79(1):8–15.

    Article  PubMed  CAS  Google Scholar 

  9. Weissglas-Volkov D, Pajukanta P. Genetic causes of high and low serum HDL-cholesterol. J Lipid Res. 2010;51(8):2032–57.

    Article  PubMed  CAS  Google Scholar 

  10. Ginsberg HN. Nonpharmacologic management of low levels of high-density lipoprotein cholesterol. Am J Cardiol. 2000;86(12A):41L–5L.

    Article  PubMed  CAS  Google Scholar 

  11. •• Briel M, Ferreira-Gonzalez I, You JJ, Karanicolas PJ, Akl EA, Wu P, Blechacz B, Bassler D, Wei X, Sharman A et al. Association between change in high density lipoprotein cholesterol and cardiovascular disease morbidity and mortality: systematic review and meta-regression analysis. BMJ 2009;338:b92. This meta-analysis of 108 randomized trials with 299,310 patients showed no association of treatment-induced changes in HDL and risk of CHD events or death rates.

    Article  PubMed  Google Scholar 

  12. •• http://www.nih.gov/news/health/may2011/nhlbi-26.htm This press release announces the early cessation of the Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglycerides: Impact on Global Health(AIM-HIGH) randomized clinical trial, a study designed to evaluate the benefits of raising HDL cholesterol with niacin treatment in patients taking statins. No CHD benefit of the add-on therapy, which effectively increased HDL cholesterol and decreased triglyceride concentrations, was observed.

  13. •• Khera AV, Cuchel M, de la Llera-Moya M, Rodrigues A, Burke MF, Jafri K, French BC, Phillips JA, Mucksavage ML, Wilensky RL, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med 2011;364(2):127–35. This report identifies cholesterol efflux capacity as a relevant determinant of CHD risk and speaks to the relevance of HDL functionality over plasma concentrations.

    Article  PubMed  CAS  Google Scholar 

  14. • Asztalos BF, Tani M, Schaefer EJ. Metabolic and functional relevance of HDL subspecies. Curr Opin Lipidol 2011;22(3):176–85. This review provides an overview of the heterogeneity of HDL and its relevance to metabolism.

    Article  PubMed  CAS  Google Scholar 

  15. Grundy SM. Hypertriglyceridemia, insulin resistance, and the metabolic syndrome. Am J Cardiol. 1999;83(9B):25F–9F.

    Article  PubMed  CAS  Google Scholar 

  16. Krauss RM, Siri PW. Dyslipidemia in type 2 diabetes. Med Clin North Am. 2004;88(4):897–909. x.

    Article  PubMed  CAS  Google Scholar 

  17. Austin MA, King MC, Vranizan KM, Krauss RM. Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation. 1990;82(2):495–506.

    Article  PubMed  CAS  Google Scholar 

  18. Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA. 2002;287(3):356–9.

    Article  PubMed  Google Scholar 

  19. Mooradian AD, Haas MJ, Wehmeier KR, Wong NC. Obesity-related changes in high-density lipoprotein metabolism. Obesity (Silver Spring). 2008;16(6):1152–60.

    Article  CAS  Google Scholar 

  20. Browning JD, Baker JA, Rogers T, Davis J, Satapati S, Burgess SC. Short-term weight loss and hepatic triglyceride reduction: evidence of a metabolic advantage with dietary carbohydrate restriction. Am J Clin Nutr. 2011;93(5):1048–52.

    Article  PubMed  CAS  Google Scholar 

  21. Dattilo AM, Kris-Etherton PM. Effects of weight reduction on blood lipids and lipoproteins: a meta-analysis. Am J Clin Nutr. 1992;56(2):320–8.

    PubMed  CAS  Google Scholar 

  22. Katcher HI, Hill AM, Lanford JL, Yoo JS, Kris-Etherton PM. Lifestyle approaches and dietary strategies to lower LDL-cholesterol and triglycerides and raise HDL-cholesterol. Endocrinol Metab Clin North Am. 2009;38(1):45–78.

    Article  PubMed  CAS  Google Scholar 

  23. Rashid S, Genest J. Effect of obesity on high-density lipoprotein metabolism. Obesity (Silver Spring). 2007;15(12):2875–88.

    Article  CAS  Google Scholar 

  24. Leon AS, Sanchez OA. Response of blood lipids to exercise training alone or combined with dietary intervention. Med Sci Sports Exerc. 2001;33(6 Suppl):S502–515. discussion S528–509.

    PubMed  CAS  Google Scholar 

  25. Kodama S, Tanaka S, Saito K, Shu M, Sone Y, Onitake F, et al. Effect of aerobic exercise training on serum levels of high-density lipoprotein cholesterol: a meta-analysis. Arch Intern Med. 2007;167(10):999–1008.

    Article  PubMed  CAS  Google Scholar 

  26. Parks EJ, Hellerstein MK. Carbohydrate-induced hypertriacylglycerolemia: historical perspective and review of biological mechanisms. Am J Clin Nutr. 2000;71(2):412–33.

    PubMed  CAS  Google Scholar 

  27. Krauss RM, Blanche PJ, Rawlings RS, Fernstrom HS, Williams PT. Separate effects of reduced carbohydrate intake and weight loss on atherogenic dyslipidemia. Am J Clin Nutr. 2006;83(5):1025–31. quiz 1205.

    PubMed  CAS  Google Scholar 

  28. Lewington S, Whitlock G, Clarke R, Sherliker P, Emberson J, Halsey J, et al. Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet. 2007;370(9602):1829–39.

    Article  PubMed  Google Scholar 

  29. Volek JS, Sharman MJ, Forsythe CE. Modification of lipoproteins by very low-carbohydrate diets. J Nutr. 2005;135(6):1339–42.

    PubMed  CAS  Google Scholar 

  30. Sharman MJ, Kraemer WJ, Love DM, Avery NG, Gomez AL, Scheett TP, et al. A ketogenic diet favorably affects serum biomarkers for cardiovascular disease in normal-weight men. J Nutr. 2002;132(7):1879–85.

    PubMed  CAS  Google Scholar 

  31. Volek JS, Sharman MJ, Gomez AL, Scheett TP, Kraemer WJ. An isoenergetic very low carbohydrate diet improves serum HDL cholesterol and triacylglycerol concentrations, the total cholesterol to HDL cholesterol ratio and postprandial pipemic responses compared with a low fat diet in normal weight, normolipidemic women. J Nutr. 2003;133(9):2756–61.

    PubMed  CAS  Google Scholar 

  32. Hu FB. Are refined carbohydrates worse than saturated fat? Am J Clin Nutr. 2010;91(6):1541–2.

    Article  PubMed  CAS  Google Scholar 

  33. • Siri-Tarino PW, Sun Q, Hu FB, Krauss RM. Saturated fat, carbohydrate, and cardiovascular disease. Am J Clin Nutr 2010;91(3):502–09. This review highlights advantages of carbohydrate restriction in the setting of obesity and insulin resistance.

    Article  PubMed  CAS  Google Scholar 

  34. Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest. 2009;119(5):1322–34.

    Article  PubMed  CAS  Google Scholar 

  35. • Welsh JA, Sharma A, Abramson JL, Vaccarino V, Gillespie C, Vos MB. Caloric sweetener consumption and dyslipidemia among US adults. JAMA 2010;303(15):1490–97. This study documents significant inverse associations between consumption of added sugars and HDL cholesterol. As a cross-sectional study, however, its results require validation by interventional studies.

    Article  PubMed  CAS  Google Scholar 

  36. Welsh JA, Sharma A, Cunningham SA, Vos MB. Consumption of added sugars and indicators of cardiovascular disease risk among US adolescents. Circulation. 2011;123(3):249–57.

    Article  PubMed  CAS  Google Scholar 

  37. Astrup A, Dyerberg J, Elwood P, Hermansen K, Hu FB, Jakobsen MU, Kok FJ, Krauss RM, Lecerf JM, Legrand P, et al. The role of reducing intakes of saturated fat in the prevention of cardiovascular disease: where does the evidence stand in 2010? Am J Clin Nutr 2011.

  38. Liu S, Willett WC, Stampfer MJ, Hu FB, Franz M, Sampson L, et al. A prospective study of dietary glycemic load, carbohydrate intake, and risk of coronary heart disease in US women. Am J Clin Nutr. 2000;71(6):1455–61.

    PubMed  CAS  Google Scholar 

  39. Ford ES, Liu S. Glycemic index and serum high-density lipoprotein cholesterol concentration among us adults. Arch Intern Med. 2001;161(4):572–6.

    Article  PubMed  CAS  Google Scholar 

  40. Frost G, Leeds AA, Dore CJ, Madeiros S, Brading S, Dornhorst A. Glycaemic index as a determinant of serum HDL-cholesterol concentration. Lancet. 1999;353(9158):1045–8.

    Article  PubMed  CAS  Google Scholar 

  41. Kelly S, Frost G, Whittaker V, Summerbell C. Low glycaemic index diets for coronary heart disease. Cochrane Database Syst Rev 2004(4):CD004467.

  42. Vrolix R, Mensink RP. Effects of glycemic load on metabolic risk markers in subjects at increased risk of developing metabolic syndrome. Am J Clin Nutr. 2010;92(2):366–74.

    Article  PubMed  CAS  Google Scholar 

  43. Mensink RP, Katan MB. Effect of dietary fatty acids on serum lipids and lipoproteins. A meta-analysis of 27 trials. Arterioscler Thromb. 1992;12(8):911–9.

    Article  PubMed  CAS  Google Scholar 

  44. Mensink RP, Zock PL, Kester AD, Katan MB. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr. 2003;77(5):1146–55.

    PubMed  CAS  Google Scholar 

  45. • Brien SE, Ronksley PE, Turner BJ, Mukamal KJ, Ghali WA. Effect of alcohol consumption on biological markers associated with risk of coronary heart disease: systematic review and meta-analysis of interventional studies. BMJ 2011;342:d636. Alcohol consumption was associated with increased HDL cholesterol concentrations independent of other measured lipid parameters in this meta-analysis.

    Article  PubMed  Google Scholar 

  46. Rimm EB, Williams P, Fosher K, Criqui M, Stampfer MJ. Moderate alcohol intake and lower risk of coronary heart disease: meta-analysis of effects on lipids and haemostatic factors. BMJ. 1999;319(7224):1523–8.

    Article  PubMed  CAS  Google Scholar 

  47. Harris WS. n-3 fatty acids and serum lipoproteins: human studies. Am J Clin Nutr. 1997;65(5 Suppl):1645S–54S.

    PubMed  CAS  Google Scholar 

  48. Balk EM, Lichtenstein AH, Chung M, Kupelnick B, Chew P, Lau J. Effects of omega-3 fatty acids on serum markers of cardiovascular disease risk: a systematic review. Atherosclerosis. 2006;189(1):19–30.

    Article  PubMed  CAS  Google Scholar 

  49. Mori TA, Burke V, Puddey IB, Watts GF, O’Neal DN, Best JD, et al. Purified eicosapentaenoic and docosahexaenoic acids have differential effects on serum lipids and lipoproteins, LDL particle size, glucose, and insulin in mildly hyperlipidemic men. Am J Clin Nutr. 2000;71(5):1085–94.

    PubMed  CAS  Google Scholar 

  50. Lungershausen YK, Abbey M, Nestel PJ, Howe PR. Reduction of blood pressure and plasma triglycerides by omega-3 fatty acids in treated hypertensives. J Hypertens. 1994;12(9):1041–5.

    Article  PubMed  CAS  Google Scholar 

  51. Roth EM, Harris WS. Fish oil for primary and secondary prevention of coronary heart disease. Curr Atheroscler Rep. 2010;12(1):66–72.

    Article  PubMed  CAS  Google Scholar 

  52. Kowey PR, Reiffel JA, Ellenbogen KA, Naccarelli GV, Pratt CM. Efficacy and safety of prescription omega-3 fatty acids for the prevention of recurrent symptomatic atrial fibrillation: a randomized controlled trial. JAMA. 2010;304(21):2363–72.

    Article  PubMed  CAS  Google Scholar 

  53. de Lorgeril M, Salen P, Martin JL, Monjaud I, Delaye J, Mamelle N. Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study. Circulation. 1999;99(6):779–85.

    PubMed  Google Scholar 

  54. Babio N, Bullo M, Salas-Salvado J. Mediterranean diet and metabolic syndrome: the evidence. Public Health Nutr. 2009;12(9A):1607–17.

    Article  PubMed  Google Scholar 

  55. Esposito K, Marfella R, Ciotola M, Di Palo C, Giugliano F, Giugliano G, et al. Effect of a mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. JAMA. 2004;292(12):1440–6.

    Article  PubMed  CAS  Google Scholar 

  56. Salas-Salvado J, Fernandez-Ballart J, Ros E, Martinez-Gonzalez MA, Fito M, Estruch R, et al. Effect of a Mediterranean diet supplemented with nuts on metabolic syndrome status: one-year results of the PREDIMED randomized trial. Arch Intern Med. 2008;168(22):2449–58.

    Article  PubMed  CAS  Google Scholar 

  57. Kastorini CM, Milionis HJ, Esposito K, Giugliano D, Goudevenos JA, Panagiotakos DB. The effect of Mediterranean diet on metabolic syndrome and its components: a meta-analysis of 50 studies and 534,906 individuals. J Am Coll Cardiol. 2011;57(11):1299–313.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

I am grateful to Dr. Ronald M. Krauss for his continued mentorship, including helpful discussions related to this manuscript.

Disclosure

No conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patty W. Siri-Tarino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siri-Tarino, P.W. Effects of Diet on High-Density Lipoprotein Cholesterol. Curr Atheroscler Rep 13, 453–460 (2011). https://doi.org/10.1007/s11883-011-0207-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-011-0207-y

Keywords

Navigation