Skip to main content
Log in

The role of proteinases in angiogenesis, heart development, restenosis, atherosclerosis, myocardial ischemia, and stroke: Insights from genetic studies

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

The development of novel gene technologies in mice has provided an elegant tool to identify gene products that are causally linked to certain physiologic processes as well as the pathogenesis of numerous disorders. Using these techniques, three major proteolytic systems — the plasminogen, the matrix metalloproteinase (MMP) and the coagulation systems — have been shown to be involved in cardiovascular diseases, which still constitute the leading cause of death in Western societies. This overview summarizes the role of these proteolytic systems in angiogenesis, arterial stenosis, allograft transplant stenosis, vein graft stenosis, atherosclerosis, myocardial infarction, cardiac development and ischemic stroke and discusses possible therapeutic implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sukhova GK, Shi GP, Simon DI, et al.: Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J Clin Invest 1998, 102:576–583.

    PubMed  CAS  Google Scholar 

  2. Gacko M, Glowinski S: Cathepsin D and cathepsin L activities in aortic aneurysm wall and parietal thrombus. Clin Chem Lab Med 1998, 36:449–452.

    Article  PubMed  CAS  Google Scholar 

  3. Gacko M and Chyczewski L: Activity and localization of cathepsin B, D and G in aortic aneurysm. Int Surg 1997, 82:398–402.

    PubMed  CAS  Google Scholar 

  4. Shi GP, Sukhova GK, Grubb A, et al.: Cystatin C deficiency in human atherosclerosis and aortic aneurysms. J Clin Invest 1999, 104:1191–1197.

    PubMed  CAS  Google Scholar 

  5. Liebetrau M, Staufer B, Auerswald EA, et al.: Increased intracellular calpain detection in experimental focal cerebral ischemia. Neuroreport 1999, 10:529–534.

    Article  PubMed  CAS  Google Scholar 

  6. Kunimatsu M, Tada T, Narita Y, et al.: Activation of calpain in myocardial infarction: an immunohistochemical study using a calpain antibody raised against active site histidine-containing peptide. Cardiovasc Pathol 1999, 8:7–15.

    Article  PubMed  CAS  Google Scholar 

  7. Iwamoto H, Miura T, Okamura T, Shirakawa K, Iwatate M, Kawamura S, Tatsuno H, Ikeda Y and Matsuzaki M: Calpain inhibitor-1 reduces infarct size and DNA fragmentation of myocardium in ischemic/reperfused rat heart. J Cardiovasc Pharmacol 1999, 33:580–586.

    Article  PubMed  CAS  Google Scholar 

  8. Yokota M, Tani E, Tsubuki S, et al.: Calpain inhibitor entrapped in liposome rescues ischemic neuronal damage. Brain Res 1999, 819:8–14.

    Article  PubMed  CAS  Google Scholar 

  9. Fukami H, Okunishi H, Miyazaki M: Chymase: its pathophysiological roles and inhibitors. Curr Pharm Des 1998, 4:439–453.

    PubMed  CAS  Google Scholar 

  10. Yoshida H, Zhang JJ, Chao L, Chao J: Kallikrein gene delivery attenuates myocardial infarction and apoptosis after myocardial ischemia and reperfusion. Hypertension 2000, 35:25–31.

    PubMed  CAS  Google Scholar 

  11. Emanueli C, Maestri R, Corradi D, et al.: Dilated and failing cardiomyopathy in bradykinin B(2) receptor knockout mice. Circulation 1999, 100:2359–2365.

    PubMed  CAS  Google Scholar 

  12. Murakami H, Yayama K, Miao RQ, et al.: Kallikrein gene delivery inhibits vascular smooth muscle cell growth and neointima formation in the rat artery after balloon angioplasty. Hypertension 1999, 34:164–170.

    PubMed  CAS  Google Scholar 

  13. Collen D: The plasminogen (fibrinolytic) system. Thromb Haemost 1999, 82:259–270.

    PubMed  CAS  Google Scholar 

  14. Nagase H: Activation mechanisms of matrix metalloproteinases. Biol Chem 1997, 378:151–160.

    PubMed  CAS  Google Scholar 

  15. Pei D, Majmudar G, Weiss SJ: Hydrolytic inactivation of a breast carcinoma cell-derived serpin by human stromelysin-3. J Biol Chem 1994, 269:25849–25855.

    PubMed  CAS  Google Scholar 

  16. Carmeliet P, Moons L, Lijnen R, et al.: Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nat Genet 1997, 17:439–444.

    Article  PubMed  CAS  Google Scholar 

  17. Dahlback B: Blood coagulation. Lancet 2000, 355:1627–1632.

    Article  PubMed  CAS  Google Scholar 

  18. Carmeliet P and Collen D: Vascular development and disorders: molecular analysis and pathogenic insights. Kidney Int 1998, 53:1519–1549.

    Article  PubMed  CAS  Google Scholar 

  19. Risau W: Mechanisms of angiogenesis. Nature 1997, 386:671–674.

    Article  PubMed  CAS  Google Scholar 

  20. Rosen ED, Chan JC, Idusogie E, et al.: Mice lacking factor VII develop normally but suffer fatal perinatal bleeding. Nature 1997, 390:290–294.

    Article  PubMed  CAS  Google Scholar 

  21. Bugge TH, Xiao Q, Kombrinck KW, et al.: Fatal embryonic bleeding events in mice lacking tissue factor, the cell-associated initiator of blood coagulation. Proc Natl Acad Sci USA 1996, 93:6258–6263.

    Article  PubMed  CAS  Google Scholar 

  22. Carmeliet P, Mackman N, Moons L, et al.: Role of tissue factor in embryonic blood vessel development. Nature 1996, 383:73–75.

    Article  PubMed  CAS  Google Scholar 

  23. Toomey JR, Kratzer KE, Lasky NM, et al.: Targeted disruption of the murine tissue factor gene results in embryonic lethality. Blood 1996, 88:1583–1587.

    PubMed  CAS  Google Scholar 

  24. Dewerchin M, Liang Z, Moons L, et al.: Blood coagulation factor X deficiency causes partial embryonic lethality and fatal neonatal bleeding in mice. Thromb Haemost 2000, 83:185–190.

    PubMed  CAS  Google Scholar 

  25. Parry GC, Mackman N: Mouse embryogenesis requires the tissue factor extracellular domain but not the cytoplasmic domain. J Clin Invest 2000, 105:1547–1554.

    PubMed  CAS  Google Scholar 

  26. Camerer E, Rottingen JA, Gjernes E, et al.: Coagulation factors VIIa and Xa induce cell signaling leading to up-regulation of the egr-1 gene. J Biol Chem 1999, 274:32225–32233.

    Article  PubMed  CAS  Google Scholar 

  27. Heymans S, Luttun A, Nuyens D, et al.: Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med 1999, 5:1135–1142.

    Article  PubMed  CAS  Google Scholar 

  28. Li H, Griscelli F, Lindenmeyer F, et al.: Systemic delivery of antiangiogenic adenovirus AdmATF induces liver resistance to metastasis and prolongs survival of mice. Hum Gene Ther 1999, 10:3045–3053.

    Article  PubMed  CAS  Google Scholar 

  29. Bajou K, Noel A, Gerard RD, et al.: Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nat Med 1998, 4:923–928.

    Article  PubMed  CAS  Google Scholar 

  30. Kleiner DE, Stetler-Stevenson WG: Matrix metalloproteinases and metastasis. Cancer Chemother Pharmacol 1999, 43:42–51.

    Article  Google Scholar 

  31. Carmeliet P, Collen D: Transgenic mouse models in angiogenesis and cardiovascular disease. J Pathol 2000, 190:387–405.

    Article  PubMed  CAS  Google Scholar 

  32. Vu TH, Shipley JM, Bergers G, et al.: MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 1998, 93:411–422.

    Article  PubMed  CAS  Google Scholar 

  33. Gerber HP, Vu TH, Ryan AM, et al.: VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 1999, 5:623–628.

    Article  PubMed  CAS  Google Scholar 

  34. Zhou Z, Apte SS, Soininen R, et al.: Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc Natl Acad Sci U S A 2000, 97:4052–4057.

    Article  PubMed  CAS  Google Scholar 

  35. Cornelius LA, Nehring LC, Harding E, et al.: Matrix metalloproteinases generate angiostatin: effects on neovascularization. J Immunol 1998, 161:6845–6852.

    PubMed  CAS  Google Scholar 

  36. Cao R, Wu HL, Veitonmaki N, et al.: Suppression of angiogenesis and tumor growth by the inhibitor K1-5 generated by plasmin-mediated proteolysis. Proc Natl Acad Sci U S A 1999, 96:5728–5733.

    Article  PubMed  CAS  Google Scholar 

  37. O’Reilly MS, Wiederschain D, Stetler-Stevenson WG, Folkman J and Moses MA: Regulation of angiostatin production by matrix metalloproteinase-2 in a model of concomitant resistance. J Biol Chem 1999, 274:29568–71.

    Article  PubMed  CAS  Google Scholar 

  38. Pozzi A, Moberg PE, Miles LA, et al.: Elevated matrix metalloprotease and angiostatin levels in integrin alpha 1 knockout mice cause reduced tumor vascularization. Proc Natl Acad Sci USA 2000, 97:2202–2207.

    Article  PubMed  CAS  Google Scholar 

  39. Gorrin-Rivas MJ, Arii S, Furutani M, et al.: Mouse macrophage metalloelastase gene transfer into a murine melanoma suppresses primary tumor growth by halting angiogenesis. Clin Cancer Res 2000, 6:1647–1654.

    PubMed  CAS  Google Scholar 

  40. Matsuda KM, Madoiwa S, Hasumi Y, Kanazawa T, Saga Y, Kume A, Mano H, Ozawa K and Matsuda M: A novel strategy for the tumor angiogenesis-targeted gene therapy: generation of angiostatin from endogenous plasminogen by protease gene transfer. Cancer Gene Ther 2000, 7:589–596.

    Article  PubMed  CAS  Google Scholar 

  41. Lijnen HR, Van Hoef B: a2-Antiplasmin gene deficiency in mice does not affect neointima formation after vascular injury. Arterioscler Thromb Vasc Biol 2000, in press.

  42. Forough R, Koyama N, Hasenstab D, et al.: Overexpression of tissue inhibitor of matrix metalloproteinase-1 inhibits vascular smooth muscle cell functions in vitro and in vivo. Circ Res 1996, 79:812–820.

    PubMed  CAS  Google Scholar 

  43. Lijnen HR, Soloway P, Collen D: Tissue inhibitor of matrix metalloproteinases-1 impairs arterial neointima formation after vascular injury in mice. Circ Res 1999, 85:1186–1191.

    PubMed  CAS  Google Scholar 

  44. Prescott MF, Sawyer WK, Von Linden-Reed J, et al.: Effect of matrix metalloproteinase inhibition on progression of atherosclerosis and aneurysm in LDL receptor-deficient mice overexpressing MMP-3, MMP-12, and MMP-13 and on restenosis in rats after balloon injury. Ann NY Acad Sci 1999, 878:179–190.

    Article  PubMed  CAS  Google Scholar 

  45. Cheng L, Mantile G, Pauly R, et al.: Adenovirus-mediated gene transfer of the human tissue inhibitor of metalloproteinase-2 blocks vascular smooth muscle cell invasiveness in vitro and modulates neointimal development in vivo. Circulation 1998, 98:2195–2201.

    PubMed  CAS  Google Scholar 

  46. Mason DP, Kenagy RD, Hasenstab D, et al.: Matrix metalloproteinase-9 overexpression enhances vascular smooth muscle cell migration and alters remodeling in the injured rat carotid artery. Circ Res 1999, 85:1179–1185.

    PubMed  CAS  Google Scholar 

  47. Lovdahl C, Thyberg J, Cercek B, et al.: Antisense oligonucleotides to stromelysin mRNA inhibit injury-induced proliferation of arterial smooth muscle cells. Histol Histopathol 1999, 14:1101–1112.

    PubMed  CAS  Google Scholar 

  48. Lijnen HR, Van Hoef B, Vanlinthout I, et al.: Accelerated neointima formation after vascular injury in mice with stromelysin-3 (MMP-11) gene inactivation. Arterioscler Thromb Vasc Biol 1999, 19:2863–2870.

    PubMed  CAS  Google Scholar 

  49. Kaiser B, Paintz M, Scholz O, et al.: A synthetic inhibitor of factor Xa, DX-9065a, reduces proliferation of vascular smooth muscle cells in vivo in rats. Thromb Res 2000, 98:175–185.

    Article  PubMed  CAS  Google Scholar 

  50. Hasenstab D, Lea H, Hart CE, et al.: Tissue factor overexpression in rat arterial neointima models thrombosis and progression of advanced atherosclerosis. Circulation 2000, 101:2651–2657.

    PubMed  CAS  Google Scholar 

  51. Campeau L, Enjalbert M, Lesperance J, et al.: Atherosclerosis and late closure of aortocoronary saphenous vein grafts: sequential angiographic studies at 2 weeks, 1 year, 5 to 7 years, and 10 to 12 years after surgery. Circulation 1983, 68:II1–7.

    PubMed  CAS  Google Scholar 

  52. Shi C, Patel A, Zhang D, et al.: Plasminogen is not required for neointima formation in a mouse model of vein graft stenosis. Circ Res 1999, 84:883–890.

    PubMed  CAS  Google Scholar 

  53. Carmeliet P, Moons L, Ploplis V, et al.: Impaired arterial neointima formation in mice with disruption of the plasminogen gene. J Clin Invest 1997, 99:200–208.

    PubMed  CAS  Google Scholar 

  54. George SJ, Lloyd CT, Angelini GD, et al.: Inhibition of late vein graft neointima formation in human and porcine models by adenovirus-mediated overexpression of tissue inhibitor of metalloproteinase-3. Circulation 2000, 101:296–304.

    PubMed  CAS  Google Scholar 

  55. Dietrich H, Hu Y, Zou Y, et al.: Mouse model of transplant arteriosclerosis: role of intercellular adhesion molecule-1. Arterioscler Thromb Vasc Biol 2000, 20:343–352.

    PubMed  CAS  Google Scholar 

  56. Moons L, Shi C, Ploplis V, et al.: Reduced transplant arteriosclerosis in plasminogen-deficient mice. J Clin Invest 1998, 102:1788–1797.

    PubMed  CAS  Google Scholar 

  57. Schneider DJ, Ricci MA, Taatjes DJ, et al.: Changes in arterial expression of fibrinolytic system proteins in atherogenesis. Arterioscler Thromb Vasc Biol 1997, 17:3294–301.

    PubMed  CAS  Google Scholar 

  58. George SJ: Tissue inhibitors of metalloproteinases and metalloproteinases in atherosclerosis. Curr Opin Lipidol 1998, 9:413–423.

    Article  PubMed  CAS  Google Scholar 

  59. Dawson S, Hamsten A, Wiman B, et al.: Genetic variation at the plasminogen activator inhibitor-1 locus is associated with altered levels of plasma plasminogen activator inhibitor-1 activity. Arterioscler Thromb 1991, 11:183–190.

    PubMed  CAS  Google Scholar 

  60. Zhang B, Ye S, Herrmann SM, et al.: Functional polymorphism in the regulatory region of gelatinase B gene in relation to severity of coronary atherosclerosis. Circulation 1999, 99:1788–1794.

    PubMed  CAS  Google Scholar 

  61. Ye S, Eriksson P, Hamsten A, et al.: Progression of coronary atherosclerosis is associated with a common genetic variant of the human stromelysin-1 promoter which results in reduced gene expression. J Biol Chem 1996, 271:13055–13060.

    Article  PubMed  CAS  Google Scholar 

  62. Xiao Q, Danton MJ, Witte DP, et al.: Plasminogen deficiency accelerates vessel wall disease in mice predisposed to atherosclerosis. Proc Natl Acad Sci U S A 1997, 94:10335–10340.

    Article  PubMed  CAS  Google Scholar 

  63. Sjoland H, Eitzman DT, Gordon D, et al.: Atherosclerosis progression in LDL receptor-deficient and apolipoprotein E-deficient mice is independent of genetic alterations in plasminogen activator inhibitor-1. Arterioscler Thromb Vasc Biol 2000, 20:846–852.

    PubMed  CAS  Google Scholar 

  64. Cortellaro M, Cofrancesco E, Boschetti C, et al.: Increased fibrin turnover and high PAI-1 activity as predictors of ischemic events in atherosclerotic patients: a case-control study: the PLAT Group. Arterioscler Thromb 1993, 13:1412–1417.

    PubMed  CAS  Google Scholar 

  65. Hamsten A, de Faire U, Walldius G, et al.: Plasminogen activator inhibitor in plasma: risk factor for recurrent myocardial infarction. Lancet 1987, 2:3–9.

    Article  PubMed  CAS  Google Scholar 

  66. Loskutoff DJ, Curriden SA, Hu G, Deng G: Regulation of cell adhesion by PAI-1. Apmis 1999, 107:54–61.

    PubMed  CAS  Google Scholar 

  67. Rifkin DB, Mazzieri R, Munger JS, et al.: Proteolytic control of growth factor availability. Apmis 1999, 107:80–85.

    Article  PubMed  CAS  Google Scholar 

  68. Allaire E, Forough R, Clowes M: Local overexpression of TIMP-1 prevents aortic aneurysm degeneration and rupture in a rat model. J Clin Invest 1998, 102:1413–1420.

    PubMed  CAS  Google Scholar 

  69. Rouis M, Adamy C, Duverger N, et al.: Adenovirus-mediated overexpression of tissue inhibitor of metalloproteinase-1 reduces atherosclerotic lesions in apolipoprotein E- deficient mice. Circulation 1999, 100:533–40.

    PubMed  CAS  Google Scholar 

  70. Pyo R, Lee JK, Shipley JM, et al.: Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms. J Clin Invest 2000, 105:1641–1649.

    PubMed  CAS  Google Scholar 

  71. Carmeliet P: Proteinases in cardiovascular aneurysms and rupture: targets for therapy? J Clin Invest 2000, 105:1519–1520.

    Article  PubMed  CAS  Google Scholar 

  72. Rossant J: Mouse mutants and cardiac development: new molecular insights into cardiogenesis. Circ Res 1996, 78:349–353.

    PubMed  CAS  Google Scholar 

  73. Clark TG, Conway SJ, Scott IC, et al.: The mammalian Tolloid-like 1 gene, Tll1, is necessary for normal septation and positioning of the heart. Development 1999, 126:2631–2642.

    PubMed  CAS  Google Scholar 

  74. Yanagisawa H, Yanagisawa M, Kapur RP, et al.: Dual genetic pathways of endothelin-mediated intercellular signaling revealed by targeted disruption of endothelin converting enzyme-1 gene. Development 1998, 125:825–836.

    PubMed  CAS  Google Scholar 

  75. Yanagisawa H, Hammer RE, Richardson JA, et al.: Disruption of ECE-1 and ECE-2 reveals a role for endothelin-converting enzyme-2 in murine cardiac development. J Clin Invest 2000, 105:1373–1382.

    PubMed  CAS  Google Scholar 

  76. Hinton RC: Thrombosis and cerebrovascular disease. Med Clin North Am 1998, 82:523–544.

    Article  PubMed  CAS  Google Scholar 

  77. Tsirka SE, Gualandris A, Amaral DG, Strickland S: Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator. Nature 1995, 377:340–344.

    Article  PubMed  CAS  Google Scholar 

  78. Tsirka SE, Rogove AD, Bugge TH, et al.: An extracellular proteolytic cascade promotes neuronal degeneration in the mouse hippocampus. J Neurosci 1997, 17:543–552.

    PubMed  CAS  Google Scholar 

  79. Tsirka SE, Bugge TH, Degen JL, Strickland S: Neuronal death in the central nervous system demonstrates a non-fibrin substrate for plasmin [published erratum appears in Proc Natl Acad Sci U S A 1997 Dec 23;94(26):14976]. Proc Natl Acad Sci U S A 1997, 94:9779–9781.

    Article  PubMed  CAS  Google Scholar 

  80. Chen ZL, Strickland S: Neuronal death in the hippocampus is promoted by plasmin-catalyzed degradation of laminin. Cell 1997, 91:917–925.

    Article  PubMed  CAS  Google Scholar 

  81. Wang YF, Tsirka SE, Strickland S, et al.: Tissue plasminogen activator (tPA) increases neuronal damage after focal cerebral ischemia in wild-type and tPA-deficient mice. Nat Med 1998, 4:228–231.

    Article  PubMed  CAS  Google Scholar 

  82. Nagai N, De Mol M, Lijnen HR, et al.: Role of plasminogen system components in focal cerebral ischemic infarction: a gene targeting and gene transfer study in mice. Circulation 1999, 99:2440–2444.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luttun, A., Dewerchin, M., Collen, D. et al. The role of proteinases in angiogenesis, heart development, restenosis, atherosclerosis, myocardial ischemia, and stroke: Insights from genetic studies. Curr Atheroscler Rep 2, 407–416 (2000). https://doi.org/10.1007/s11883-000-0079-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-000-0079-z

Keywords

Navigation