Skip to main content

Advertisement

Log in

Which Biomarkers Are Effective for Identifying Th2-Driven Inflammation in Asthma?

  • ASTHMA (WJ CALHOUN AND SP PETERS, SECTION EDITORS)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Recognition of asthma as a heterogeneous disease revealed different potential molecular targets and urged the development of targeted, customized treatment modalities. Evidence was provided for different inflammatory subsets of asthma and more recently, further refined to T helper (Th)2-high and Th2-low subphenotypes with different responsiveness to standard and targeted pharmacotherapy. Given these differences in immunology and pathophysiology, proof of concept studies of novel treatment modalities for asthma should be performed in adequate, well-defined phenotypes. In this review, we describe both existing and novel biomarkers of Th2-inflammation in asthma that can be applied to classify asthma subphenotypes in clinical studies and for treatment monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Global Initiative for Asthma (updated 2012), www.ginasthma.com.

  2. Diamant Z, Boot JD, Mantzouranis E, et al. Biomarkers in asthma and allergic rhinitis. Pulm Pharmacol Ther. 2010;23(6):468–81.

    Article  PubMed  CAS  Google Scholar 

  3. Diamant Z, Boot JD, Virchow JC. Summing up 100 years of asthma. Respir Med. 2007;101(3):378–88.

    Article  PubMed  Google Scholar 

  4. Rosi E, Ronchi MC, Grazzini M, et al. Sputum analysis, bronchial hyperresponsiveness, and airway function in asthma: results of a factor analysis. J Allergy Clin Immunol. 1999;103:232–7.

    Article  PubMed  CAS  Google Scholar 

  5. Haldar P, Pavord ID, Shaw DE, et al. Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care Med. 2008;178(3):218–24.

    Article  PubMed  Google Scholar 

  6. Moore WC, Meyers DA, Wenzel SE, et al. National Heart, Lung, and Blood Institute's severe asthma research program. Am J Respir Crit Care Med. 2010;181(4):315–23.

    Article  PubMed  Google Scholar 

  7. Wenzel SE. Asthma: defining of the persistent adult phenotypes. Lancet. 2006;368(9537):804–13.

    Article  PubMed  CAS  Google Scholar 

  8. Woodruff PG, Boushey HA, Dolganov GM, et al. Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proc Natl Acad Sci U S A. 2007;104:15858–63.

    Article  PubMed  CAS  Google Scholar 

  9. Woodruff PG, Modrek B, Choy DF, et al. T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med. 2009;180(5):388–95.

    Article  PubMed  CAS  Google Scholar 

  10. Ingram JL, Kraft M. IL-13 in asthma and allergic disease: asthma phenotypes and targeted therapies. J Allergy Clin Immunol. 2012;130(4):829–42.

    Article  PubMed  CAS  Google Scholar 

  11. Jia G, Erickson RW, Choy DF, et al. Bronchoscopic Exploratory Research Study of Biomarkers in Corticosteroid-refractory Asthma (BOBCAT) study group. Periostin is a systemic biomarker of eosinophilic airway inflammation in asthmatic patients. J Allergy Clin Immunol. 2012;130(3):647–65.

    Article  PubMed  CAS  Google Scholar 

  12. Ruddy M, Zuiker R, Morelli N, et al. Detection of increased levels of Th2-derived cytokines in ultracentrifuged sputum following allergen challenge and their responsiveness to fluticasone. Am J Respir Crit Care Med. 2010:A4043.

  13. Van der Pouw Kraan TC, Van der Zee JS, Boeije LC, et al. The role of IL-13 in IgE synthesis by allergic asthma patients. Clin Exp Immunol. 1998;111(1):129–35.

    Article  PubMed  Google Scholar 

  14. Besnard AG, Togbe D, Guillou N, et al. IL-33-activated dendritic cells are critical for allergic airway inflammation. Eur J Immunol. 2011;41(6):1675–86.

    Article  PubMed  CAS  Google Scholar 

  15. Ramirez-Icaza G, Mohammed KA, Nasreen N, et al. Th2 cytokines IL-4 and IL-13 downregulate paxillin expression in bronchial airway epithelial cells. J Clin Immunol. 2004;24(4):426–34.

    Article  PubMed  CAS  Google Scholar 

  16. Martinez-Nunez RT, Louafi F, Sanchez-Elsner T. The interleukin 13 (IL-13) pathway in human macrophages is modulated by microRNA-155 via direct targeting of interleukin 13 receptor alpha1 (IL13Ralpha1). J Biol Chem. 2011;286(3):1786–94.

    Article  PubMed  CAS  Google Scholar 

  17. Zhu Z, Homer RJ, Wang Z, et al. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest. 1999;103(6):779–88.

    Article  PubMed  CAS  Google Scholar 

  18. Chibana K, Trudeau JB, Mustovich AT, et al. IL-13 induced increases in nitrite levels are primarily driven by increases in inducible nitric oxide synthase as compared with effects on arginases in human primary bronchial epithelial cells. Clin Exp Allergy. 2008;38(6):936–46.

    Article  PubMed  CAS  Google Scholar 

  19. Venkayya R, Lam M, Willkom M, et al. The Th2 lymphocyte products IL-4 and IL-13 rapidly induce airway hyperresponsiveness through direct effects on resident airway cells. Am J Respir Cell Mol Biol. 2002;26(2):202–8.

    Article  PubMed  CAS  Google Scholar 

  20. Horn BR, Robin ED, Theodore J, Van-Kessel TA. Total eosinophil counts in the management of bronchial asthma. N Engl J Med. 1975;292:1152–5.

    Article  PubMed  CAS  Google Scholar 

  21. Ulrik CS, Frederiksen J. Mortality and markers of risk of asthma death among 1,075 outpatients with asthma. Chest. 1995;108:10–5.

    Article  PubMed  CAS  Google Scholar 

  22. Krause JR, Boggs DR. Search for eosinopenia in hospitalized patients with normal blood leukocyte concentration. Am J Hematol. 1987;24(1):55–63.

    Article  PubMed  CAS  Google Scholar 

  23. Winkel P, Statland BE, Saunders AM, et al. Within-day physiologic variation of leukocyte types in healthy subjects as assayed by two automated leukocyte differential analyzers. Am J Clin Pathol. 1981;75(5):693–700.

    PubMed  CAS  Google Scholar 

  24. Massanari M, Holgate ST, Busse WW, et al. Effect of omalizumab on peripheral blood eosinophilia in allergic asthma. Respir Med. 2010;104(2):188–96.

    Article  PubMed  CAS  Google Scholar 

  25. Noga O, Hanf G, Kunkel G. Immunological and clinical changes in allergic asthmatics following treatment with omalizumab. Int Arch Allergy Immunol. 2003;131:46–52.

    Article  PubMed  CAS  Google Scholar 

  26. Haldar P, Brightling CE, Hargadon B, et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med. 2009;360:973–84.

    Article  PubMed  CAS  Google Scholar 

  27. Büttner C, Lun A, Splettstoesser T, et al. Monoclonal anti-interleukin-5 treatment suppresses eosinophil but not T-cell functions. Eur Respir J. 2003;21(5):799–803.

    Article  PubMed  CAS  Google Scholar 

  28. Burrows B, Martinez FD, Halonen M, et al. Association of asthma with serum IgE levels and skin-test reactivity to allergens. N Engl J Med. 1989;320:271–7.

    Article  PubMed  CAS  Google Scholar 

  29. Kerstjens HA, Schouten JP, Brand PL, et al. Importance of total serum IgE for improvement in airways hyperresponsiveness with inhaled corticosteroids in asthma and chronic obstructive pulmonary disease. The Dutch CNSLD Study Group. Am J Respir Crit Care Med. 1995;151(2 PT 1):360–8.

    Article  PubMed  CAS  Google Scholar 

  30. Ahmad Al Obaidi AH, Mohamed Al Samarai AG, Yahya Al Samarai AK, et al. The predictive value of IgE as biomarker in asthma. J Asthma. 2008;45:654–63.

    Article  PubMed  CAS  Google Scholar 

  31. Peona V, De Amici M, Quaglini S, et al. Serum eosinophilic cationic protein: is there a role in respiratory disorders? J Asthma. 2010;47:131–4.

    Article  PubMed  CAS  Google Scholar 

  32. Vatrella A, Ponticiello A, Parrella R. Serum eosinophil cationic protein (ECP) as a marker of disease activity and treatment efficacy in seasonal asthma. Allergy. 1996;51:547–55.

    PubMed  CAS  Google Scholar 

  33. Nielsen LP, Peterson CG, Dahl R. Serum eosinophil granule proteins predict asthma risk in allergic rhinitis. Allergy. 2009;64(5):733–7.

    Article  PubMed  CAS  Google Scholar 

  34. Stelmach I, Jerzynska J, Kuna P. Markers of allergic inflammation in peripheral blood of children with asthma after treatment with inhaled triamcinolone acetonide. Ann Allergy Asthma Immunol. 2001;87(4):319–26.

    Article  PubMed  CAS  Google Scholar 

  35. Zietkowski Z, Skiepko R, Tomasiak-Lozowska MM, et al. Airway inflammation and eotaxin in exhaled breath condensate of patients with severe persistent allergic asthma during omalizumab therapy. Adv Med Sci. 2011;56(2):318–22.

    Article  PubMed  CAS  Google Scholar 

  36. Conroy DM, Jopling LA, Lloyd CM, et al. CCR4 blockade does not inhibit allergic airways inflammation. J Leukoc Biol. 2003;74(4):558–63.

    Article  PubMed  CAS  Google Scholar 

  37. Jahnz-Róyk K, Plusa T, Mierzejewska J. Eotaxin in serum of patients with asthma or chronic obstructive pulmonary disease: relationship with eosinophil cationic protein and lung function. Mediat Inflamm. 2000;9(3–4):175–9.

    Article  Google Scholar 

  38. Pukelsheim K, Stoeger T, Kutschke D, et al. Cytokine profiles in asthma families depend on age and phenotype. PLoS One. 2010;5(12):e14299. 13.

    Article  PubMed  CAS  Google Scholar 

  39. Hoffmann HJ, Nielsen LP, Harving H, et al. Asthmatics able to step down from inhaled corticosteroid treatment without loss of asthma control have low serum eotaxin/CCL11. Clin Respir J. 2008;2(3):149–57.

    Article  PubMed  CAS  Google Scholar 

  40. Hijnen D, De Bruin-Weller M, Oosting B, et al. Serum thymus and activation-regulated chemokine (TARC) and cutaneous T cell- attracting chemokine (CTACK) levels in allergic diseases: TARC and CTACK are disease-specific markers for atopic dermatitis. J Allergy Clin Immunol. 2004;113(2):334–40.

    Article  PubMed  CAS  Google Scholar 

  41. Sugawara N, Yamashita T, Ote Y, et al. TARC in allergic disease. Allergy. 2002;57:180–1.

    Article  PubMed  CAS  Google Scholar 

  42. Sekiya T, Yamada H, Yamaguchi M, et al. Increased levels of a TH2-type CC chemokine thymus and activation regulated chemokine (TARC) in serum and induced sputum of asthmatics. Allergy. 2002;57:173–7.

    Article  PubMed  CAS  Google Scholar 

  43. Leung TF, Wong CK, Chan IH, et al. Plasma concentration of thymus and activation-regulated chemokine is elevated in childhood asthma. J Allergy Clin Immunol. 2002;110:404–9.

    Article  PubMed  CAS  Google Scholar 

  44. Bochner BS, Hudson SA, Xiao HQ, et al. Release of both CCR4-active and CXCR3-active chemokines during human allergic pulmonary late-phase reactions. J Allergy Clin Immunol. 2003;112(5):930–4.

    Article  PubMed  CAS  Google Scholar 

  45. ten Hacken NH, Oosterhoff Y, Kauffman HF, et al. Elevated serum interferon-gamma in atopic asthma correlates with increased airways responsiveness and circadian peak expiratory flow variation. Eur Respir J. 1998;11(2):312–6.

    Article  PubMed  Google Scholar 

  46. Koopmans JG, Lutter R, Jansen HM, van der Zee JS. Adding salmeterol to an inhaled corticosteroid reduces allergen-induced serum IL-5 and peripheral blood eosinophils. J Allergy Clin Immunol. 2005;116(5):1007–113.

    Article  PubMed  CAS  Google Scholar 

  47. Wenzel S, Ford L, Pearlman D, et al. Dupilumab in persistent asthma with elevated eosinophil levels. N Engl J Med. 2013; (ahead of print).

  48. Corren J, Lemanske RF, Hanania NA, et al. Lebrikizumab treatment in adults with asthma. N Engl J Med. 2011;365:1088–98.

    Article  PubMed  CAS  Google Scholar 

  49. Hanania NA, Wenzel S, Rosén K, et al. Exploring the effects of omalizumab in allergic asthma. Am J Respir Crit Care Med. 2013;187(8):804–11.

    Article  PubMed  CAS  Google Scholar 

  50. Venge P. Monitoring the allergic inflammation. Allergy. 2004;59(1):26–32.

    Article  PubMed  CAS  Google Scholar 

  51. Wolthers OD, Heuck C. Circadian variations in serum eosinophil cationic protein, and serum and urine eosinophil protein X. Pediatr Allergy Immunol. 2003;14:130–3.

    Article  PubMed  CAS  Google Scholar 

  52. Kristjansson S, Strannegård IL, Strannegård Ö, et al. Urinary eosinophil protein X in children with atopic asthma: a useful marker of antiinflammatory treatment. J Allergy Clin Immunol. 1996;97:1179–87.

    Article  PubMed  CAS  Google Scholar 

  53. Oymar K. High levels of urinary eosinophil protein X in young asthmatic children predict persistent atopic asthma. Pediatr Allergy Immunol. 2001;12:312–7.

    Article  PubMed  CAS  Google Scholar 

  54. Diamant Z, Sampson AP. Anti-inflammatory mechanisms of leukotriene modulators. Editorial. Clin Exp Allergy. 1999;29:1449–53.

    Article  PubMed  CAS  Google Scholar 

  55. Daffern PJ, Muilenburg D, Hugli TE, et al. Association of urinary leukotriene E4 excretion during aspirin challenges with severity of respiratory responses. J Allergy Clin Immunol. 1999;104:559–64.

    Article  PubMed  CAS  Google Scholar 

  56. Diamant Z, Timmers MC, van der Veen H, et al. The effect of MK-0591, a novel 5-lipoxygenase activating protein inhibitor, on leukotriene biosynthesis and allergen-induced airway responses in asthmatic subjects in vivo. J Allergy Clin Immunol. 1995;95:42–51.

    Article  PubMed  CAS  Google Scholar 

  57. Liu MC, Dube LM, Lancaster J. Acute and chronic effects of a 5-lipoxygenase inhibitor in asthma: a 6-month randomized multicenter trial. Zileuton Study Group. J Allergy Clin Immunol. 1996;98(5 Pt 1):859–71.

    Article  PubMed  CAS  Google Scholar 

  58. Cai C, Yang J, Hu S, et al. Relationship between urinary cysteinyl leukotriene E4 levels and clinical response to antileukotriene treatment in patients with asthma. Lung. 2007;185:105–12.

    Article  PubMed  CAS  Google Scholar 

  59. Sousa AR, Lams BE, Pfister R, et al. Expression of interleukin-5 and granulocyte-macrophage colony-stimulating factor in aspirin-sensitive and non-aspirin-sensitive asthmatic airways. Am J Respir Crit Care Med. 1997;156(5):1384–9.

    Article  PubMed  CAS  Google Scholar 

  60. Braunstahl GJ, Kleinjan A, Overbeek SE, et al. Segmental bronchial provocation induces nasal inflammation in allergic rhinitis patients. Am J Respir Crit Care Med. 2000;161(6):2051–7.

    Article  PubMed  CAS  Google Scholar 

  61. Berry M, Hargadon B, Morgan A, et al. Alveolar nitric oxide in adults with asthma: evidence of distal lung inflammation in refractory asthma. Eur Respir J. 2005;25(6):986–91.

    Article  PubMed  CAS  Google Scholar 

  62. Overbeek SE, O'Sullivan S, Leman K, et al. Effect of montelukast compared with inhaled fluticasone on airway inflammation. Clin Exp Allergy. 2004;34(9):1388–94.

    Article  PubMed  CAS  Google Scholar 

  63. Van Rensen EL, Straathof KC, Veselic-Charvat MA, et al. Effect of inhaled steroids on airway hyperresponsiveness, sputum eosinophils, and exhaled nitric oxide levels in patients with asthma. Thorax. 1999;54(5):403–8.

    Article  PubMed  Google Scholar 

  64. Robinson DS, Assoufi B, Durham SR, et al. Eosinophil cationic protein (ECP) and eosinophil protein X (EPX) concentrations in serum and bronchial lavage fluid in asthma. Clin Exp Allergy. 1995;25(11):1118–27.

    Article  PubMed  CAS  Google Scholar 

  65. Vignola AM, Chanez P, Campbell AM, et al. Airway inflammation in mild intermittent and in persistent asthma. Am J Respir Crit Care Med. 1998;157(2):403–9.

    Article  PubMed  CAS  Google Scholar 

  66. de Blay F, Krieger P, Spirlet F, et al. Repeated inhalation of low doses of cat allergen that do not induce clinical symptoms increases bronchial hyperresponsiveness and eosinophil cationic protein levels. Int Arch Allergy Immunol. 1999;120(2):158–65.

    Article  PubMed  Google Scholar 

  67. Peebles Jr RS, Hamilton RG, Lichtenstein LM, et al. Antigen-specific IgE and IgA antibodies in bronchoalveolar lavage fluid are associated with stronger antigen-induced late phase reactions. Clin Exp Allergy. 2001;31(2):239–48.

    Article  PubMed  CAS  Google Scholar 

  68. Woodman L, Sutcliffe A, Kaur D, et al. Chemokine concentrations and mast cell chemotactic activity in BAL fluid in patients with eosinophilic bronchitis and asthma, and in normal control subjects. Chest. 2006;130(2):37137–8.

    Article  Google Scholar 

  69. Feltis BN, Reid DW, Ward C, et al. BAL eotaxin and IL-5 in asthma, and the effects of inhaled corticosteroid and beta2 agonist. Respirology. 2004;9(4):507–13.

    Article  PubMed  Google Scholar 

  70. Becky Kelly EA, Busse WW, Jarjour NN. A comparison of the airway response to segmental antigen bronchoprovocation in atopic asthma and allergic rhinitis. J Allergy Clin Immunol. 2003;111(1):79–86.

    Article  PubMed  CAS  Google Scholar 

  71. Walker C, Bauer W, Braun RK, et al. Activated T cells and cytokines in bronchoalveolar lavages from patients with various lung diseases associated with eosinophilia. Am J Respir Crit Care Med. 1994;150(4):1038–48.

    Article  PubMed  CAS  Google Scholar 

  72. Batra V, Musani AI, Hastie AT, et al. Bronchoalveolar lavage fluid concentrations of transforming growth factor (TGF)-beta1, TGF-beta2, interleukin (IL)-4 and IL-13 after segmental allergen challenge and their effects on alpha-smooth muscle actin and collagen III synthesis by primary human lung fibroblasts. Clin Exp Allergy. 2004;34(3):437–44.

    Article  PubMed  CAS  Google Scholar 

  73. Ali FR, Kay AB, Larché M. Airway hyperresponsiveness and bronchial mucosal inflammation in T cell peptide-induced asthmatic reactions in atopic subjects. Thorax. 2007;62(9):750–7.

    Article  PubMed  Google Scholar 

  74. Fajt ML, Gelhaus SL, Freeman B, et al. Prostaglandin D2 pathway upregulation: Relation to asthma severity, control, and TH2 inflammation. J Allergy Clin Immunol. 2013;31(6):1504–12.

    Article  CAS  Google Scholar 

  75. Wenzel SE, Trudeau JB, Kaminsky DA, et al. Effect of 5-lipoxygenase inhibition on bronchoconstriction and airway inflammation in nocturnal asthma. Am J Respir Crit Care Med. 1995;152(3):897–905.

    Article  PubMed  CAS  Google Scholar 

  76. Cowburn AS, Sladek K, Soja J, et al. Overexpression of leukotriene C4 synthase in bronchial biopsies from patients with aspirin-intolerant asthma. J Clin Invest. 1998;101(4):834–46.

    Article  PubMed  CAS  Google Scholar 

  77. Szczeklik A, Sladek K, Dworski R, et al. Bronchial aspirin challenge causes specific eicosanoid response in aspirin-sensitive asthmatics. Am J Respir Crit Care Med. 1996;154(6 Pt 1):1608–14.

    Article  PubMed  CAS  Google Scholar 

  78. Oosterhoff Y, Overbeek SE, Douma R, et al. Lower leukotriene C(4) levels in bronchoalveolar lavage fluid of asthmatic subjects after 2.5 years of inhaled corticosteroid therapy. Mediators Inflamm. 1995;4(6):426–30.

    Article  PubMed  CAS  Google Scholar 

  79. Bakakos P, Schleich F, Alchanatis M, et al. Induced sputum in asthma: from bench to bedside. Curr Med Chem. 2011;18(10):1415–22.

    Article  PubMed  CAS  Google Scholar 

  80. Sohn SW, Lee HS, Park HW, et al. Evaluation of cytokine mRNA in induced sputum from patients with allergic rhinitis: relationship to airway hyperresponsiveness. Allergy. 2008;63(3):268–73.

    Article  PubMed  CAS  Google Scholar 

  81. Gauvreau GM, Watson RM, Rerecich TJ, et al. Repeatability of allergen-induced airway inflammation. J Allergy Clin Immunol. 1999;104(1):66–71.

    Article  PubMed  CAS  Google Scholar 

  82. Clarke GW, Diamant Z, Greenaway SD, et al. Launching the BIOSPIT initiative: harmonizing sputum outcomes in multicenter trials. Pulm Pharmacol Ther. 2013;26(3):400–1.

    Article  PubMed  CAS  Google Scholar 

  83. Al Obaidi AH, Al Samarai AG, Al-Janabi J, et al. The predictive value of eosinophil cationic protein and lactate dehydrogenase in asthma: a comparative study of serum versus sputum. World Allergy Organ J. 2009;2(7):144–9.

    Article  PubMed  Google Scholar 

  84. Xu J, Jiang F, Nayeri F, Zetterström O. Apoptotic eosinophils in sputum from asthmatic patients correlate negatively with levels of IL-5 and eotaxin. Respir Med. 2007;101(7):1447–54.

    Article  PubMed  Google Scholar 

  85. Fujimoto K, Kubo K, Matsuzawa Y, et al. Eosinophil cationic levels in induced sputum correlate with the severity of bronchial asthma. Chest. 1997;112:1241–7.

    Article  PubMed  CAS  Google Scholar 

  86. Hanxiang N, Jiong Y, Yanwei C, et al. Persistent airway inflammation and bronchial hyperresponsiveness in patients with totally controlled asthma. Int J Clin Pract. 2008;62(4):599–605.

    Article  PubMed  CAS  Google Scholar 

  87. Broekema M, Volbeda F, Timens W, et al. Airway eosinophilia in remission and progression of asthma: accumulation with a fast decline of FEV(1). Respir Med. 2010;104(9):1254–62.

    Article  PubMed  CAS  Google Scholar 

  88. Schulze J, Voss S, Zissler U, et al. Airway responses and inflammation in subjects with asthma after four days of repeated high-single-dose allergen challenge. Respir Res. 2012;13:78.

    Google Scholar 

  89. Lee JH, Park KH, Park JW, et al. YKL-40 in induced sputum after allergen bronchial provocation in atopic asthma. J Investig Allergol Clin Immunol. 2012;22(7):501–7.

    PubMed  CAS  Google Scholar 

  90. Lazarus SC, Chinchilli VM, Rollings NJ, et al. Smoking affects response to inhaled corticosteroids or leukotriene receptor antagonists in asthma. Am J Respir Crit Care Med. 2007;175(8):783–90.

    Article  PubMed  CAS  Google Scholar 

  91. Strauch E, Moske O, Thoma S, et al. A randomized controlled trial on the effect of montelukast on sputum eosinophil cationic protein in children with corticosteroid-dependent asthma. Pediatr Res. 2003;54(2):198–203.

    Article  PubMed  CAS  Google Scholar 

  92. Gauvreau GM, Boulet LP, Schmid-Wirlitsch C, et al. Roflumilast attenuates allergen-induced inflammation in mild asthmatic subjects. Respir Res. 2011;12:140.

    Article  PubMed  CAS  Google Scholar 

  93. Dente FL, Carnevali S, Bartoli ML, et al. Profiles of proinflammatory cytokines in sputum from different groups of severe asthmatic patients. Ann Allergy Asthma Immunol. 2006;97:312–20.

    Article  PubMed  CAS  Google Scholar 

  94. Park SW, Jangm HK, An MH, et al. Interleukin-13 and interleukin-5 in induced sputum of eosinophilic bronchitis: comparison with asthma. Chest. 2005;128(4):1921–7.

    Article  PubMed  CAS  Google Scholar 

  95. Broide DH. Immunologic and inflammatory mechanisms that drive asthma progression to remodeling. J Allergy Clin Immunol. 2008;121(3):560–70.

    Article  PubMed  CAS  Google Scholar 

  96. Komai-Koma M, McKay A, Thomson L, et al. Immuno-regulatory cytokines in asthma: IL-15 and IL-13 in induced sputum. Clin Exp Allergy. 2001;31(9):1441–8.

    Article  PubMed  CAS  Google Scholar 

  97. Aggarwal S, Moodley YP, Thompson PJ, Misso NL. Prostaglandin E2 and cysteinyl leukotriene concentrations in sputum: association with asthma severity and eosinophilic inflammation. Clin Exp Allergy. 2010;40(1):85–93.

    PubMed  CAS  Google Scholar 

  98. Tufvesson E, van Weele LJ, Ekedahl H, Bjermer L. Levels of cysteinyl-leukotrienes in exhaled breath condensate are not due to saliva contamination. Clin Respir J. 2010;4(2):83–8.

    Article  PubMed  CAS  Google Scholar 

  99. Tufvesson E, Aronsson D, Bjermer L. Cysteinyl-leukotriene levels in sputum differentiate asthma from rhinitis patients with or without bronchial hyperresponsiveness. Clin Exp Allergy. 2007;37(7):1067–73.

    Article  PubMed  CAS  Google Scholar 

  100. Hallstrand TS, Henderson Jr WR. Role of leukotrienes in exercise-induced bronchoconstriction. Curr Allergy Asthma Rep. 2009;9(1):18–25.

    Article  PubMed  CAS  Google Scholar 

  101. Gaber F, Daham K, Higashi A, et al. Increased levels of cysteinyl-leukotrienes in saliva, induced sputum, urine and blood from patients with aspirin-intolerant asthma. Thorax. 2008;63(12):1076–82.

    Article  PubMed  CAS  Google Scholar 

  102. Pavord I, Woodcock A, Parker D, et al. Salmeterol plus fluticasone propionate versus fluticasone propionate plus montelukast: a randomised controlled trial investigating the effects on airway inflammation in asthma. Respir Res. 2007;8:67.

    Google Scholar 

  103. Reid DW, Misso NL, Aggarwal S, et al. Tolerance and rebound with zafirlukast in patients with persistent asthma. J Negat Results Biomed. 2008;7:3.

    Google Scholar 

  104. Ricciardolo FL, Di Stefano A, Silvestri M, et al. Exhaled nitric oxide is related to bronchial eosinophilia and airway hyperresponsiveness to bradykinin in allergen-induced asthma exacerbation. Int J Immunopathol Pharmacol. 2012;25(1):175–82.

    PubMed  CAS  Google Scholar 

  105. Dweik RA, Sorkness RL, Wenzel S, et al. Use of exhaled nitric oxide measurement to identify a reactive, at-risk phenotype among patients with asthma. Am J Respir Crit Care Med. 2010;181(10):1033–41.

    Article  PubMed  CAS  Google Scholar 

  106. Nair P, Kjarsgaard M, Armstrong S, et al. Nitric oxide in exhaled breath is poorly correlated to sputum eosinophils in patients with prednisone-dependent asthma. J Allergy Clin Immunol. 2010;126(2):404–6.

    Article  PubMed  Google Scholar 

  107. Redington AE, Meng QH, Springall DR, et al. Increased expression of inducible nitric oxide synthase and cyclo-oxygenase-2 in the airway epithelium of asthmatic subjects and regulation by corticosteroid treatment. Thorax. 2001;56(5):351–7.

    Article  PubMed  CAS  Google Scholar 

  108. Jiang J, Malavia N, Suresh V, George SC. Nitric oxide gas phase release in human small airway epithelial cells. Respir Res. 2009;10:3.

    Article  PubMed  CAS  Google Scholar 

  109. Suresh V, Mih JD, George SC. Measurement of IL-13-induced iNOS-derived gas phase nitric oxide in human bronchial epithelial cells. Am J Respir Cell Mol Biol. 2007;37(1):97–104.

    Article  PubMed  CAS  Google Scholar 

  110. Liang Y, Yeligar SM, Brown LA. Exhaled breath condensate: a promising source for biomarkers of lung disease. Sci World J. 2012;2012:217518.

    Google Scholar 

  111. Kazani S, Planaguma A, Ono E, et al. Exhaled breath condensate eicosanoid levels associate with asthma and its severity. J Allergy Clin Immunol. 2013, Apr 19. (in press).

  112. Rathnayake N, Akerman S, Klinge B, et al. Salivary biomarkers for detection of systemic diseases. PLoS One. 2013;8(4):e61356.

    Article  PubMed  CAS  Google Scholar 

  113. Blicharz TM, Siqueira WL, Helmerhorst EJ, et al. Fiber-optic microsphere-based antibody array for the analysis of inflammatory cytokines in saliva. Anal Chem. 2009;81(6):2106–14.

    Article  PubMed  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Zuzana Diamant has served on an advisory board (Aerocrine) and served as a consultant for various companies (Hall Allergy Hexal, Mundipharma, Urogenix, Profess, QPS Netherlands).

Leif Bjermer has served on advisory boards and received payment for giving lectures.

Ellen Tufvesson declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with animal subjects performed by any of the authors.

Human Studies

With regard to the author’s research cited in this paper, all institutional and national guidelines for the care and use of laboratory animals were followed. In addition, all procedures were followed in accordance with the ethical standards of the responsible committee on human experimentation and with the Helsinki Declaration of 1975, as revised in 2000 and 2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzana Diamant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diamant, Z., Tufvesson, E. & Bjermer, L. Which Biomarkers Are Effective for Identifying Th2-Driven Inflammation in Asthma?. Curr Allergy Asthma Rep 13, 477–486 (2013). https://doi.org/10.1007/s11882-013-0376-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-013-0376-6

Keywords

Navigation