Skip to main content

Advertisement

Log in

New Directions in Immunotherapy

  • RHINITIS (JN BARANIUK AND JJ OPPENHEIMER, SECTION EDITORS)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Allergen immunotherapy (AIT) is effective in reducing the clinical symptoms associated with allergic rhinitis, asthma and venom-induced anaphylaxis. Subcutaneous (SCIT) and sublingual immunotherapy (SLIT) with unmodified allergen extracts are the most widely prescribed AIT regimens. The efficacy of these 2 routes appears comparable, but the safety profile with SLIT is more favorable allowing for home administration and requiring less patient time. However, both require that the treatment is taken regularly over several years, e.g., monthly in a supervised medical setting with SCIT and daily at home with SLIT. Despite the difference in treatment settings, poor adherence has been reported with both routes. Emerging evidence suggests that AIT may be effective in other allergic conditions such as atopic dermatitis, venom sting-induced large local reactions, and food allergy. Research with oral immunotherapy (OIT) for food allergies suggest that many patients can be desensitized during treatment, but questions remain about whether this can produce long term tolerance. Further studies are needed to identify appropriate patients and treatment regimens with these conditions. Efforts to develop safer and more effective AIT for inhalant allergies have led to investigations with modified allergens and alternate routes. Intralymphatic (ILIT) has been shown to produce long-lasting clinical benefits after three injections comparable to a 3-year course of SCIT. Epicutaneous (EPIT) has demonstrated promising results for food and inhalant allergies. Vaccine modifications, such as T cell epitopes or the use of viral-like particles as an adjuvant, have been shown to provide sustained clinical benefits after a relatively short course of treatment compared to the currently available AIT treatments, SLIT and SCIT. These newer approaches may increase the utilization and adherence to AIT because the multi-year treatment requirement of currently available AIT is a likely deterrent for initiating and adhering to treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AD:

Atopic dermatitis

AE:

Adverse reaction

AIT:

Allergy immunotherapy

DBPC:

Double-blind, placebo-controlled

EPIT:

Epicutaneous immunotherapy

ILIT:

Intralymphatic immunotherapy

LLR:

Large local reaction

LPSR:

Late-phase skin response

OIT:

Oral immunotherapy

SCIT:

Subcutaneous immunotherapy

SLIT:

Sublingual immunotherapy

SPT:

Skin prick test

SR:

Systemic reaction

TRSS:

Total Rhinoconjunctivitis Symptom Score

VIT:

Venom immunotherapy

VLP:

Virus-like particles

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Akinbami LJ, Moorman JE, Bailey C. Trends in asthma prevalence, health care use, and mortality in the United States, 2001–2010. NCHS data brief, no 94. Hyattsville: National Center for Health Statistics; 2012.

    Google Scholar 

  2. Barnett SB, Nurmagambetov TA. Costs of asthma in the United States: 2002-2007. J Allergy Clin Immunol. 2011;127:145–52.

    Article  PubMed  Google Scholar 

  3. Wallace D, Dykewicz M, Bernstein D, et al. The diagnosis and management of rhinitis: an updated practice parameter. J Allerg Clin Immunol. 2008;122:S1–S84.

    Article  Google Scholar 

  4. Soni A allergic rhinitis: trends in use and expenditures, 2000 and 2005. Medical Expenditure Panel Survey. Statistical Brief #204: May 2008. http://www.meps.ahrq.gov/mepsweb/data_files/publications/st204/stat204.pdf].

  5. Schoenwetter WF, Dupclay Jr L, Appajosyula S, Botteman MF, Pashos CL. Economic impact and quality-of-life burden of allergic rhinitis. Curr Med Res Opin. 2004;20:305–17.

    Article  PubMed  Google Scholar 

  6. • Durham SR, Emminger W, Kapp A, et al. SQ-standardized sublingual grass immunotherapy: confirmation of disease modification 2 years after 3 years of treatment in a randomized trial. J Allergy Clin Immunol. 2012;129:717–25 e5. Study demonstrating the persistent efficacy of SLIT after treament discontinuation.

    Article  PubMed  Google Scholar 

  7. Marogna M, Spadolini I, Massolo A, Canonica GW, Passalacqua G. Long-lasting effects of sublingual immunotherapy according to its duration: a 15-year prospective study. J Allergy Clin Immunol. 2010;126:969–75.

    Article  PubMed  Google Scholar 

  8. Hankin CS, Cox L, Wang Z, Bronstone A. Does Allergen-specific immunotherapy provide cost benefits for children and adults with allergic rhinitis? Results from large-scale retrospective analyses jointly funded by AAAAI and ACAAI. J Allerg Clin Immunol. 2011;127:AB73.

    Article  Google Scholar 

  9. • Lockey RF, Hankin CS. Health economics of allergen-specific immunotherapy in the United States. J Allergy Clin Immunol. 2011;127:39–43. Brief but fairly complete review of the cost-efficacy of AIT.

    Article  PubMed  Google Scholar 

  10. Strunk RC, Sternberg AL, Szefler SJ, Zeiger RS, Bender B, Tonascia J. Long-term budesonide or nedocromil treatment, once discontinued, does not alter the course of mild to moderate asthma in children and adolescents. J Pediatr. 2009;154:682–7.

    Article  PubMed  CAS  Google Scholar 

  11. Ariano R, Berto P, Tracci D, Incorvaia C, Frati F. Pharmacoeconomics of allergen immunotherapy compared with symptomatic drug treatment in patients with allergic rhinitis and asthma. Allergy Asthma Proc. 2006;27:159–63.

    PubMed  Google Scholar 

  12. Jacobsen L, Niggemann B, Dreborg S, et al. Specific immunotherapy has long-term preventive effect of seasonal and perennial asthma: 10-year follow-up on the PAT study. Allergy. 2007;62:943–8.

    Article  PubMed  CAS  Google Scholar 

  13. Eng PA, Borer-Reinhold M, Heijnen IAFM, Gnehm HPE. Twelve-year follow-up after discontinuation of preseasonal grass pollen immunotherapy in childhood. Allergy. 2006;61:198–201.

    Article  PubMed  CAS  Google Scholar 

  14. Durham SR, Emminger W, Kapp A, Colombo G, de Monchy JG, Rak S, Scadding GK, Andersen JS, Riis B, Dahl R. Long-term clinical efficacy in grass pollen-induced rhinoconjunctivitis after treatment with SQ-standardized grass allergy immunotherapy tablet. J Allergy Clin Immunol. 2010;125:131–8 e1-7.

    Article  PubMed  CAS  Google Scholar 

  15. Cox L, Jacobsen L. Comparison of allergen immunotherapy practice patterns in the United States and Europe. Ann Allergy Asthma Immunol. 2009;103:451–9. quiz 9-61, 95.

    Article  PubMed  CAS  Google Scholar 

  16. • Senna G, Lombardi C, Canonica GW, Passalacqua G. How adherent to sublingual immunotherapy prescriptions are patients? The manufacturers' viewpoint. J Allergy Clin Immunol. 2010;126:668–9. Study demonstrates the relatively poor compliance with SLIT in ‘real-life’ studies.

    Article  PubMed  Google Scholar 

  17. Hankin CS, Cox L, Lang D, et al. Allergy immunotherapy among Medicaid-enrolled children with allergic rhinitis: patterns of care, resource use, and costs. J Allergy Clin Immunol. 2008;121:227–32.

    Article  PubMed  Google Scholar 

  18. Hsu NM, Reisacher WR. A comparison of attrition rates in patients undergoing sublingual immunotherapy vs subcutaneous immunotherapy. International forum of allergy & rhinology 2012;2:280–4.

    Google Scholar 

  19. • Pajno GB, Caminiti L, Crisafulli G, et al. Adherence to sublingual immunotherapy in preschool children. Pediatr Allergy Immunol. 2012;23:688–9. Demonstrates poor compliance with SLIT in the very young pediatric population.

    Article  PubMed  Google Scholar 

  20. Pajno GB, Vita D, Caminiti L, et al. Children's compliance with allergen immunotherapy according to administration routes. J Allergy Clin Immunol. 2005;116:1380–1.

    Article  PubMed  Google Scholar 

  21. Rotiroti G, Shamji M, Durham SR, Till SJ. Repeated low-dose intradermal allergen injection suppresses allergen-induced cutaneous late responses. J Allergy Clin Immunol. 2012;130:918–24 e1.

    Article  PubMed  CAS  Google Scholar 

  22. Bal SM, Ding Z, van Riet E, Jiskoot W, Bouwstra JA. Advances in transcutaneous vaccine delivery: do all ways lead to Rome? Journal of controlled release. 2010;148:266–82.

    Google Scholar 

  23. Nestle FO, Di Meglio P, Qin JZ, Nickoloff BJ. Skin immune sentinels in health and disease. Nat Rev Immunol. 2009;9:679–91.

    PubMed  CAS  Google Scholar 

  24. Bos JD, Meinardi MM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol. 2000;9:165–9.

    Article  PubMed  CAS  Google Scholar 

  25. Matzinger P. Friendly and dangerous signals: is the tissue in control? Nat Immunol. 2007;8:11–3.

    Article  PubMed  CAS  Google Scholar 

  26. Swamy M, Jamora C, Havran W, Hayday A. Epithelial decision makers: in search of the 'epimmunome'. Nat Immunol. 2010;11:656–65.

    Article  PubMed  CAS  Google Scholar 

  27. Cevikbas F, Steinhoff M. IL-33: a novel danger signal system in atopic dermatitis. J Invest Dermatol. 2012;132:1326–9.

    Article  PubMed  CAS  Google Scholar 

  28. Gilliet M, Soumelis V, Watanabe N, et al. Human dendritic cells activated by TSLP and CD40L induce proallergic cytotoxic T cells. J Exp Med. 2003;197:1059–63.

    Article  PubMed  CAS  Google Scholar 

  29. Savinko T, Matikainen S, Saarialho-Kere U, et al. IL-33 and ST2 in atopic dermatitis: expression profiles and modulation by triggering factors. J Invest Dermatol. 2012;132:1392–400.

    Article  PubMed  CAS  Google Scholar 

  30. Soumelis V. TSLP: from allergy to vaccine adjuvant. Eur J Immunol. 2012;42:293–5.

    Article  PubMed  CAS  Google Scholar 

  31. Soumelis V, Reche PA, Kanzler H, et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol. 2002;3:673–80.

    Article  PubMed  CAS  Google Scholar 

  32. Noon L. Prophylactic inoculation against hay fever. Lancet. 1911;1:1572–3.

    Article  Google Scholar 

  33. Scadding GK, Brostoff J. Low dose sublingual therapy in patients with allergic rhinitis due to house dust mite. Clin Allergy. 1986;16:483–91.

    Article  PubMed  CAS  Google Scholar 

  34. Tucker MH, Tankersley MS. Perception and practice of sublingual immunotherapy among practicing allergists. Ann Allergy Asthma Immunol. 2008;101:419–25.

    Article  PubMed  Google Scholar 

  35. Sikora JM, Tankersley MS. Perception and practice of sublingual immunotherapy among practicing allergists in the United States. Ann Allergy Asthma Immunol 2013; in press.

  36. Esch RE, Bush RK, Peden D, Lockey RF. Sublingual-oral administration of standardized allergenic extracts: phase 1 safety and dosing results. Ann Allergy Asthma Immunol. 2008;100:475–81.

    Article  PubMed  Google Scholar 

  37. Skoner D, Gentile D, Bush R, Fasano MB, McLaughlin A, Esch RE. Sublingual immunotherapy in patients with allergic rhinoconjunctivitis caused by ragweed pollen. J Allergy Clin Immunol. 2010;125(3):660–6

    Google Scholar 

  38. Creticos P, Esch R, Couroux P, Gentile D, Angelo P, Whitlow B, et al. A Randomized, Double-Blind, Placebo-Controlled, Parallel Trial of Standardized Short Ragweed Sublingual Allergy Immunotherapy Liquid Extract in Adult Subjects with Ragweed-Induced Allergic Rhinoconjunctivitis. Journal of Allergy and Clinical Immunology. 2013;abstract in press.

  39. Creticos P, Maloney J, Nolte H, Creticos P, Maloney J, Nolte H, et al. Efficacy and safety of a novel ragweed Allergy Immunotherapy Tablet (AIT) during peak season in North America. J Allerg Clin Immunol. 2012;129:AB143.

    Article  Google Scholar 

  40. Maloney J, Nolte H, Nekam K, et al. Dose-related effects of ragweed allergy immunotherapy tablet on nasal and ocular symptoms of allergic rhinoconjunctivitis during the peak ragweed pollen seasons in Europe and North America. J Allerg Clin Immunol. 2012;129:AB47.

    Article  Google Scholar 

  41. Blaiss M, Maloney J, Nolte H, Gawchik S, Yao R, Skoner DP. Efficacy and safety of timothy grass allergy immunotherapy tablets in North American children and adolescents. J Allergy Clin Immunol. 2011;127(64–71):e1–4.

    PubMed  Google Scholar 

  42. Cox LS, Casale TB, Nayak AS, Bernstein DI, Creticos PS, Ambroisine L, et al. Clinical efficacy of 300IR 5-grass pollen sublingual tablet in a US study: The importance of allergen-specific serum IgE. J Allergy Clin Immunol. 2012;130(6):1327–34

    Google Scholar 

  43. Nelson HS, Nolte H, Creticos P, Maloney J, Wu J, Bernstein DI. Efficacy and safety of timothy grass allergy immunotherapy tablet treatment in North American adults. J Allergy Clin Immunol. 2011;127(72–80):e1–2.

    Google Scholar 

  44. Amar SM, Harbeck RJ, Sills M, Silveira LJ, O'Brien H, Nelson HS. Response to sublingual immunotherapy with grass pollen extract: monotherapy versus combination in a multiallergen extract. J Allergy Clin Immunol. 2009;124(1):150–6. e1–5. Epub 2009/06/16.

    Article  PubMed  CAS  Google Scholar 

  45. Swamy RS, Reshamwala N, Hunter T, Vissamsetti S, Santos CB, Baroody FM, et al. Epigenetic modifications and improved regulatory T-cell function in subjects undergoing dual sublingual immunotherapy. J Allergy Clin Immunol. 2012;130(1):215–24 e7ne

    Google Scholar 

  46. Bush RK, Swenson C, Fahlberg B, Evans MD, Esch R, Morris M, et al. House dust mite sublingual immunotherapy: results of a US trial. J Allergy Clin Immunol. 2011;127(4):974-81 e1–7.

    Google Scholar 

  47. Wood R. Immunologic effects of cockroach specific immunotherapy AAAAI annual meeting presentation. 2012.

  48. Novak N. Allergen specific immunotherapy for atopic dermatitis. Curr Opin Allergy Clin Immunol. 2007;7:542–6.

    Article  PubMed  CAS  Google Scholar 

  49. Bussmann C, Bockenhoff A, Henke H, Werfel T, Novak N. Does allergen-specific immunotherapy represent a therapeutic option for patients with atopic dermatitis? J Allergy Clin Immunol. 2006;118(6):1292–8.

    Google Scholar 

  50. •• Compalati E, Rogkakou A, Passalacqua G, Canonica GW. Evidences of efficacy of allergen immunotherapy in atopic dermatitis: an updated review. Curr Opin Allergy Clin Immunol. 2012;12:427–33. Systematic review of AIT for atopic dermatitis indicating that the data are conflicting in terms of the efficacy of this treatment for this condition and underscoring the need for further studies.

    Article  PubMed  CAS  Google Scholar 

  51. Novak N, Thaci D, Hoffmann M, et al. Subcutaneous immunotherapy with a depigmented polymerized birch pollen extract–a new therapeutic option for patients with atopic dermatitis. Int Arch Allergy Immunol. 2011;155:252–6.

    Article  PubMed  Google Scholar 

  52. Novak N, Bieber T, Hoffmann M, Folster-Holst R, Homey B, Werfel T, et al. Efficacy and safety of subcutaneous allergen-specific immunotherapy with depigmented polymerized mite extract in atopic dermatitis. J Allergy Clin Immunol. 2012;130(4):925–31

    Google Scholar 

  53. Pajno GB, Caminiti L, Vita D, et al. Sublingual immunotherapy in mite-sensitized children with atopic dermatitis: a randomized, double-blind, placebo-controlled study. J Allergy Clin Immunol. 2007;120:164–70.

    Article  PubMed  CAS  Google Scholar 

  54. Immune Tolerance Network. Promoting tolerance to common allergens in high-risk children: Global Prevention of Asthma in Children (GPAC) Study. ClinicalTrials.gov Identifier:NCT00346398.

  55. Nelson HS, Lahr J, Rule R, Bock A, Leung D. Treatment of anaphylactic sensitivity to peanuts by immunotherapy with injections of aqueous peanut extract. J Allergy Clin Immunol. 1997;99:744–51.

    Article  PubMed  CAS  Google Scholar 

  56. Oppenheimer JJ, Nelson HS, Bock SA, Christensen F, Leung DY. Treatment of peanut allergy with rush immunotherapy. J Allergy Clin Immunol. 1992;90:256–62.

    Article  PubMed  CAS  Google Scholar 

  57. Patriarca C, Romano A, Venuti A, et al. Oral specific hyposensitization in the management of patients allergic to food. Allergol Immunopathol (Madr). 1984;12:275–81.

    CAS  Google Scholar 

  58. Patriarca G, Nucera E, Roncallo C, et al. Oral desensitizing treatment in food allergy: clinical and immunological results. Aliment Pharmacol Ther. 2003;17:459–65.

    Article  PubMed  CAS  Google Scholar 

  59. Patriarca G, Buonomo A, Roncallo C, et al. Oral desensitisation in cow milk allergy: immunological findings. Int J Immunopathol Pharmacol. 2002;15:53–8.

    PubMed  Google Scholar 

  60. Buchanan AD, Green TD, Jones SM, et al. Egg oral immunotherapy in nonanaphylactic children with egg allergy. J Allergy Clin Immunol. 2007;119:199–205.

    Article  PubMed  CAS  Google Scholar 

  61. Vickery BP, Pons L, Kulis M, Steele P, Jones SM, Burks AW. Individualized IgE-based dosing of egg oral immunotherapy and the development of tolerance. Ann Allergy Asthma Immunol. 2010;105:444–50.

    Article  PubMed  CAS  Google Scholar 

  62. Itoh N, Itagaki Y, Kurihara K. Rush specific oral tolerance induction in school-age children with severe egg allergy: one year follow up. Allergol Int. 2010;59:43–51.

    Article  PubMed  Google Scholar 

  63. Garcia Rodriguez R, Urra JM, Feo-Brito F, et al. Oral rush desensitization to egg: efficacy and safety. Clin Exp Allergy. 2011;41:1289–96.

    Article  PubMed  CAS  Google Scholar 

  64. Meglio P, Giampietro PG, Carello R, Gabriele I, Avitabile S, Galli E. Oral food desensitization in children with IgE-mediated hen's egg allergy: a new protocol with raw hen's egg. Pediatr Allergy Immunol. 2012 Aug 13.

  65. Fuentes-Aparicio V, Alonso-Lebrero E, Zapatero L, Infante S, Lorente R, Angeles Munoz-Fernandez M, et al. Oral immunotherapy in hen's egg-allergic children increases a hypo-proliferative subset of CD4+ T cells that could constitute a marker of tolerance achievement. Pediatr Allergy Immunol. 2012;23(7):648–53.

  66. Dello Iacono I, Tripodi S, Calvani M, Panetta V, Verga MC, Miceli Sopo S. Specific oral tolerance induction with raw hen's egg in children with very severe egg allergy: A randomized controlled trial. Pediatr Allergy Immunol. 2012 Sep 9.

  67. •• Burks AW, Jones SM, Wood RA, et al. Oral immunotherapy for treatment of egg allergy in children. N Engl J Med. 2012;367:233–43. Well-designed study examining the efficacy and safety of egg OIT, showing that most can be desensitized but most do not achieve long-term tolerance.

    Article  PubMed  CAS  Google Scholar 

  68. Meglio P, Bartone E, Plantamura M, Arabito E, Giampietro PG. A protocol for oral desensitization in children with IgE-mediated cow's milk allergy. Allergy. 2004;59:980–7.

    Article  PubMed  CAS  Google Scholar 

  69. Staden U, Rolinck-Werninghaus C, Brewe F, Wahn U, Niggemann B, Beyer K. Specific oral tolerance induction in food allergy in children: efficacy and clinical patterns of reaction. Allergy. 2007;62:1261–9.

    Article  PubMed  CAS  Google Scholar 

  70. Staden U, Blumchen K, Blankenstein N, et al. Rush oral immunotherapy in children with persistent cow's milk allergy. J Allerg Clin Immunol. 2008;122:418–9.

    Article  Google Scholar 

  71. Longo G, Barbi E, Berti I, et al. Specific oral tolerance induction in children with very severe cow's milk-induced reactions. J Allergy Clin Immunol. 2008;121:343–7.

    Article  PubMed  CAS  Google Scholar 

  72. Martorell Aragones A, Felix Toledo R, Cerda Mir JC, Martorell Calatayud A. Oral rush desensitization to cow milk. Following of desensitized patients during three years. Allergologia et Immunopathologia. 2007;35:174–6.

    Article  PubMed  CAS  Google Scholar 

  73. Pajno GB, Caminiti L, Ruggeri P, et al. Oral immunotherapy for cow's milk allergy with a weekly up-dosing regimen: a randomized single-blind controlled study. Ann Allergy Asthma Immunol. 2010;105:376–81.

    Google Scholar 

  74. Skripak JM, Nash SD, Rowley H, et al. A randomized, double-blind, placebo-controlled study of milk oral immunotherapy for cow's milk allergy. J Allergy Clin Immunol. 2008;122:1154–60.

    Article  PubMed  CAS  Google Scholar 

  75. Morisset M, Moneret-Vautrin DA, Guenard L, et al. Oral desensitization in children with milk and egg allergies obtains recovery in a significant proportion of cases. A randomized study in 60 children with cow's milk allergy and 90 children with egg allergy. Eur Ann Allergy Clin Immunol. 2007;39:12–9.

    PubMed  CAS  Google Scholar 

  76. Zapatero L, Alonso E, Fuentes V, Martinez MI. Oral desensitization in children with cow's milk allergy. J Investig Allergol Clin Immunol. 2008;18:389–96.

    PubMed  CAS  Google Scholar 

  77. •• Brozek JL, Terracciano L, Hsu J, et al. Oral immunotherapy for IgE-mediated cow's milk allergy: a systematic review and meta-analysis. Clin Exp Allergy. 2012;42:363–74. Systematic review that concluded that the “potentially large benefit of oral immunotherapy in patients with cow's milk allergy may be counterbalanced by frequent and sometimes serious adverse effects”.

    Article  PubMed  CAS  Google Scholar 

  78. Clark AT, Islam S, King Y, Deighton J, Anagnostou K, Ewan PW. Successful oral tolerance induction in severe peanut allergy. Allergy. 2009;64:1218–20.

    Article  PubMed  CAS  Google Scholar 

  79. Jones SM, Pons L, Roberts JL, et al. Clinical efficacy and immune regulation with peanut oral immunotherapy. J Allergy Clin Immunol. 2009;124(292–300):e1–e97.

    Google Scholar 

  80. Blumchen K, Ulbricht H, Staden U, et al. Oral peanut immunotherapy in children with peanut anaphylaxis. J Allergy Clin Immunol. 2010;126:83–91. e1.

    Article  PubMed  CAS  Google Scholar 

  81. Anagnostou K, Clark A, King Y, Islam S, Deighton J, Ewan P. Efficacy and safety of high-dose peanut oral immunotherapy with factors predicting outcome. Clin Exp Allergy. 2011;41:1273–81.

    Article  PubMed  CAS  Google Scholar 

  82. Varshney P, Jones SM, Scurlock AM, et al. A randomized controlled study of peanut oral immunotherapy: clinical desensitization and modulation of the allergic response. J Allergy Clin Immunol. 2011;127:654–60.

    Article  PubMed  CAS  Google Scholar 

  83. •• Nurmatov U, Venderbosch I, Devereux G, Simons FE, Sheikh A. Allergen-specific oral immunotherapy for peanut allergy. Cochrane Database Syst Rev. 2012;9:CD009014. Systematic review that concluded that “in view of the risk of adverse events and the lack of evidence of long-term benefits, allergen-specific peanut OIT cannot currently be recommended as a treatment for the management of patients with IgE-mediated peanut allergy”.

    PubMed  Google Scholar 

  84. Thyagarajan A, Varshney P, Jones SM, et al. Peanut oral immunotherapy is not ready for clinical use. J Allergy Clin Immunol. 2010;126:31–2.

    Article  PubMed  Google Scholar 

  85. • Keet CA, Frischmeyer-Guerrerio PA, Thyagarajan A, et al. The safety and efficacy of sublingual and oral immunotherapy for milk allergy. J Allergy Clin Immunol. 2012;129:448–55. 55 e1–5. Review of AIT for milk allergy that concluded “OIT was more efficacious for desensitization to CM than SLIT alone but was accompanied by more systemic side effects. Clinical desensitization was lost in some cases within 1 week off therapy”.

    Article  PubMed  CAS  Google Scholar 

  86. Enrique E, Pineda F, Malek T, et al. Sublingual immunotherapy for hazelnut food allergy: a randomized, double-blind, placebo-controlled study with a standardized hazelnut extract. J Allergy Clin Immunol. 2005;116:1073–9.

    Article  PubMed  CAS  Google Scholar 

  87. Fernandez-Rivas M, Garrido Fernandez S, Nadal JA, et al. Randomized double-blind, placebo-controlled trial of sublingual immunotherapy with a Pru p 3 quantified peach extract. Allergy. 2009;64:876–83.

    Article  PubMed  CAS  Google Scholar 

  88. Kim EH, Bird JA, Kulis M, et al. Sublingual immunotherapy for peanut allergy: clinical and immunologic evidence of desensitization. J Allergy Clin Immunol. 2011;127:640–6.

    Article  PubMed  CAS  Google Scholar 

  89. Kulis M, Saba K, Kim EH, et al. Increased peanut-specific IgA levels in saliva correlate with food challenge outcomes after peanut sublingual immunotherapy. J Allergy Clin Immunol. 2012;129:1159–62.

    Article  PubMed  CAS  Google Scholar 

  90. Mauro M, Russello M, Incorvaia C, et al. Birch-apple syndrome treated with birch pollen immunotherapy. Int Arch Allergy Immunol. 2011;156:416–22.

    Article  PubMed  Google Scholar 

  91. Nucera E, Aruanno A, Rizzi A, et al. Profilin desensitization in two patients with plant-derived food allergy. Int J Immunopathol Pharmacol. 2012;25:531–5.

    PubMed  CAS  Google Scholar 

  92. Cortellini G, Spadolini I, Santucci A, et al. Improvement of shrimp allergy after sublingual immunotherapy for house dust mites: a case report. Eur Ann Allergy Clin Immunol. 2011;43:162–4.

    PubMed  CAS  Google Scholar 

  93. Patriarca G, Nucera E, Roncallo C, et al. Sublingual desensitization in patients with wasp venom allergy: preliminary results. Int J Immunopathol Pharmacol. 2008;21:669–77.

    PubMed  CAS  Google Scholar 

  94. Severino MG, Cortellini G, Bonadonna P, Francescato E, Panzini I, Macchia D, et al. Sublingual immunotherapy for large local reactions caused by honeybee sting: a double-blind, placebo-controlled trial. J Allergy Clin Immunol. 2008;122(1):44–8.

    Google Scholar 

  95. Mitragotri S. Immunization without needles. Nat Rev Immunol. 2005;5:905–16.

    Article  PubMed  CAS  Google Scholar 

  96. Frech SA, Dupont HL, Bourgeois AL, et al. Use of a patch containing heat-labile toxin from Escherichia coli against travellers' diarrhoea: a phase II, randomised, double-blind, placebo-controlled field trial. Lancet. 2008;371:2019–25.

    Article  PubMed  CAS  Google Scholar 

  97. Frerichs DM, Ellingsworth LR, Frech SA, et al. Controlled, single-step, stratum corneum disruption as a pretreatment for immunization via a patch. Vaccine. 2008;26:2782–7.

    Article  PubMed  CAS  Google Scholar 

  98. Sullivan SP, Koutsonanos DG, Del Pilar Martin M, Lee JW, Zarnitsyn V, Choi SO, et al. Dissolving polymer microneedle patches for influenza vaccination. Nat Med. 2010;16(8):915–20.

  99. Enfield J, O'Connell ML, Lawlor K, Jonathan E, O'Mahony C, Leahy M. In-vivo dynamic characterization of microneedle skin penetration using optical coherence tomography. J Biomed Opt. 2010;15:046001.

    Article  PubMed  Google Scholar 

  100. Fernando GJ, Chen X, Prow TW, et al. Potent immunity to low doses of influenza vaccine by probabilistic guided micro-targeted skin delivery in a mouse model. PLoS One. 2010;5:e10266.

    Google Scholar 

  101. Haq MI, Smith E, John DN, et al. Clinical administration of microneedles: skin puncture, pain and sensation. Biomed Microdevices. 2009;11:35–47.

    Article  PubMed  CAS  Google Scholar 

  102. Kim YC, Jarrahian C, Zehrung D, Mitragotri S, Prausnitz MR. Delivery systems for intradermal vaccination. Curr Top Microbiol Immunol. 2012;351:77–112.

    Article  PubMed  CAS  Google Scholar 

  103. van der Maaden K, Jiskoot W, Bouwstra J. Microneedle technologies for (trans)dermal drug and vaccine delivery. J Contr Rel Offic J Contr Rel Soc. 2012;161:645–55.

    Article  CAS  Google Scholar 

  104. Vrdoljak A, McGrath MG, Carey JB, et al. Coated microneedle arrays for transcutaneous delivery of live virus vaccines. J Contr Rel Offic J Contr Rel Soc. 2012;159:34–42.

    Article  CAS  Google Scholar 

  105. Wood LC, Jackson SM, Elias PM, Grunfeld C, Feingold KR. Cutaneous barrier perturbation stimulates cytokine production in the epidermis of mice. J Clin Invest. 1992;90:482–7.

    Article  PubMed  CAS  Google Scholar 

  106. Tan G, Xu P, Lawson LB, et al. Hydration effects on skin microstructure as probed by high-resolution cryo-scanning electron microscopy and mechanistic implications to enhanced transcutaneous delivery of biomacromolecules. J Pharm Sci. 2010;99:730–40.

    PubMed  CAS  Google Scholar 

  107. Dupont C, Kalach N, Soulaines P, Legoue-Morillon S, Piloquet H, Benhamou PH. Cow's milk epicutaneous immunotherapy in children: a pilot trial of safety, acceptability, and impact on allergic reactivity. J Allergy Clin Immunol. 2010;125:1165–7.

    Article  PubMed  CAS  Google Scholar 

  108. Mondoulet L, Dioszeghy V, Ligouis M, Dhelft V, Dupont C, Benhamou PH. Epicutaneous immunotherapy on intact skin using a new delivery system in a murine model of allergy. Clin Exp Allergy. 2010;40:659–67.

    Article  PubMed  CAS  Google Scholar 

  109. Eyler JM. Smallpox in history: the birth, death, and impact of a dread disease. J Lab Clin Med. 2003;142:216–20.

    Article  PubMed  Google Scholar 

  110. Frech SA, Kenney RT, Spyr CA, et al. Improved immune responses to influenza vaccination in the elderly using an immunostimulant patch. Vaccine. 2005;23:946–50.

    Article  PubMed  CAS  Google Scholar 

  111. Jodar L, Duclos P, Milstien JB, Griffiths E, Aguado MT, Clements CJ. Ensuring vaccine safety in immunization programmes–a WHO perspective. Vaccine. 2001;19:1594–605.

    Article  PubMed  CAS  Google Scholar 

  112. Glenn GM, Kenney RT, Ellingsworth LR, Frech SA, Hammond SA, Zoeteweij JP. Transcutaneous immunization and immunostimulant strategies: capitalizing on the immunocompetence of the skin. Expert Rev Vaccines. 2003;2:253–67.

    Article  PubMed  CAS  Google Scholar 

  113. Glenn GM, Rao M, Matyas GR, Alving CR. Skin immunization made possible by cholera toxin. Nature. 1998;391:851.

    Article  PubMed  CAS  Google Scholar 

  114. Glenn GM, Scharton-Kersten T, Vassell R, Mallett CP, Hale TL, Alving CR. Transcutaneous immunization with cholera toxin protects mice against lethal mucosal toxin challenge. J Immunol. 1998;161:3211–4.

    PubMed  CAS  Google Scholar 

  115. Glenn GM, Taylor DN, Li X, Frankel S, Montemarano A, Alving CR. Transcutaneous immunization: a human vaccine delivery strategy using a patch. Nat Med. 2000;6:1403–6.

    Article  PubMed  CAS  Google Scholar 

  116. Phillips EW. Relief of hay-fever by intradermal injections of pollen extract. JAMA. 1926;86:182–4.

    Article  Google Scholar 

  117. Hurwitz SH. Medicine: seasonal hay fever-some problems in treatment. Cal West Med. 1930;33:520–1.

    PubMed  CAS  Google Scholar 

  118. Vallery-Radot P, Hangenau J. Asthme d'origine équine. Essai de désensibilisation par des cutiréactions répétées. Bull Soc Méd Hôp Paris. 1921;45:1251–60.

    Google Scholar 

  119. Pautrizel R, Cabanieu G, Bricaud H, Broustet P. Allergenic group specificity & therapeutic consequences in asthma; specific desensitization method by epicutaneous route. Sem Hop. 1957;33:1394–403.

    PubMed  CAS  Google Scholar 

  120. Blamoutier P, Blamoutier J, Guibert L. Treatment of pollinosis with pollen extracts by the method of cutaneous quadrille ruling. Presse Med. 1959;67:2299–301.

    PubMed  CAS  Google Scholar 

  121. Blamoutier P, Blamoutier J, Guibert L. Traitement co-saisonnier de la pollinose par l'application d'extraits de pollens sur des quadrillages cutanés. Revue Francaise d'Allergie. 1961;1:112–20.

    Article  Google Scholar 

  122. Eichenberger H, Storck H. Co-seasonal desensitization of pollinosis with the scarification-method of Blamoutier. Acta Allergol. 1966;21:261–7.

    Article  PubMed  CAS  Google Scholar 

  123. Martin-DuPan R, Buser F, Neyroud M. Treatment of pollen allergy using the cutaneous checker square method of Blamoutier and Guibert. Schweiz Rundsch Med Prax. 1971;60:1469–72.

    PubMed  CAS  Google Scholar 

  124. Palma-Carlos A-G. Traitement co-saisonnier des pollinoses au Portugal par la méthode des quadrillages cutanés. Revue Francaise d'Allergie. 1967;7:92–5.

    Article  CAS  Google Scholar 

  125. Senti G, Graf N, Haug S, et al. Epicutaneous allergen administration as a novel method of allergen-specific immunotherapy. J Allergy Clin Immunol. 2009;124:997–1002.

    Article  PubMed  CAS  Google Scholar 

  126. • Senti G, von Moos S, Tay F, et al. Epicutaneous allergen-specific immunotherapy ameliorates grass pollen-induced rhinoconjunctivitis: A double-blind, placebo-controlled dose escalation study. J Allergy Clin Immunol. 2012;129:128–35. EPIT dose-response study that demonstrated that EPIT can be effective in treating grass-induced allergic rhinitis.

    Article  PubMed  CAS  Google Scholar 

  127. Agostinis F, Forti S, Di Berardino F. Grass transcutaneous immunotherapy in children with seasonal rhinoconjunctivitis. Allergy. 2010;65:410–1.

    Article  PubMed  CAS  Google Scholar 

  128. Johansen P, Mohanan D, Martinez-Gomez JM, Kundig TM, Gander B. Lympho-geographical concepts in vaccine delivery. J Contr Rel Offic J Contr Rel Soc. 2010;148:56–62.

    Article  CAS  Google Scholar 

  129. Kündig TM, Johansen P, Senti G. Intralymphatic vaccination. In: Rapuolli R, Bagnoli F, editors. Vaccine design. Norfolk: Caister Academic Press; 2011. p. 211–24.

    Google Scholar 

  130. Senti G, Johansen P, Kundig TM. Intralymphatic immunotherapy. Curr Opin Allergy Clin Immunol. 2009;9:537–43.

    Article  PubMed  Google Scholar 

  131. Senti G, Johansen P, Kundig TM. Intralymphatic immunotherapy: from the rationale to human applications. Curr Top Microbiol Immunol. 2011;352:71–84.

    Article  PubMed  CAS  Google Scholar 

  132. von Moos S, Kundig TM, Senti G. Novel administration routes for allergen-specific immunotherapy: a review of intralymphatic and epicutaneous allergen-specific immunotherapy. Immunol Allergy Clin North Am. 2011;31(2):391–406.

    Google Scholar 

  133. Johansen P, Senti G, Martinez Gomez JM, et al. Toll-like receptor ligands as adjuvants in allergen-specific immunotherapy. Clin Exp Allergy. 2005;35:1591–8.

    Article  PubMed  CAS  Google Scholar 

  134. Johansen P, Senti G, Martinez Gomez JM, Wuthrich B, Bot A, Kundig TM. Heat denaturation, a simple method to improve the immunotherapeutic potential of allergens. Eur J Immunol. 2005;35:3591–8.

    Article  PubMed  CAS  Google Scholar 

  135. Martinez-Gomez JM, Johansen P, Erdmann I, Senti G, Crameri R, Kundig TM. Intralymphatic injections as a new administration route for allergen-specific immunotherapy. Int Arch Allergy Immunol. 2009;150:59–65.

    Article  PubMed  CAS  Google Scholar 

  136. Martinez-Gomez JM, Johansen P, Rose H, et al. Targeting the MHC class II pathway of antigen presentation enhances immunogenicity and safety of allergen immunotherapy. Allergy. 2009;64:172–8.

    Article  PubMed  CAS  Google Scholar 

  137. Mohanan D, Slutter B, Henriksen-Lacey M, et al. Administration routes affect the quality of immune responses: a cross-sectional evaluation of particulate antigen-delivery systems. J Contr Rel Offic J Contr Rel Soc. 2010;147:342–9.

    Article  CAS  Google Scholar 

  138. Senti G, Prinz Vavricka BM, Erdmann I, et al. Intralymphatic allergen administration renders specific immunotherapy faster and safer: a randomized controlled trial. Proc Natl Acad Sci U S A. 2008;105:17908–12.

    Article  PubMed  CAS  Google Scholar 

  139. Malling H, Blom L, Poulsen B, Poulsen L, Witten M. Is intralymphatic specific immunotherapy with grass pollen allergen ready for clinical use? European Academy of Allergy and Clinical Immunology Congress; Geneva. http://www.eaaci2012.com/SiteSpecific/Eaaci2012/AbstractDetails.aspx?Nr=1595.

  140. Siegrist CA. The immunology of vaccination. In: Plotkin SA, Orenstein WA, Offit PA, editors. Vaccines. 5th ed. Philadelphia: Elsevier Inc; 2008. p. 17–36.

    Google Scholar 

  141. Hylander T, Latif L, Petersson-Westin U, Cardell LO. Intralymphatic allergen-specific immunotherapy: an effective and safe alternative treatment route for pollen-induced allergic rhinitis. J Allergy Clin Immunol; 2013: in press.

  142. • Senti G, Crameri R, Kuster D, et al. Intralymphatic immunotherapy for cat allergy induces tolerance after only 3 injections. J Allergy Clin Immunol. 2012;129:1290–6. Demonstrated the effectiveness of ILIT in treating cat allergy.

    Article  PubMed  CAS  Google Scholar 

  143. Bolhaar ST, Zuidmeer L, Ma Y, et al. A mutant of the major apple allergen, Mal d 1, demonstrating hypo-allergenicity in the target organ by double-blind placebocontrolled food challenge. Clin Exp Allergy 2005;35:1638–44.

    Google Scholar 

  144. Burks AW, King N, Bannon GA. Modification of a major peanut allergen leads to loss of IgE binding. Int Arch Allergy Immunol 1999;118:313–4.

    Google Scholar 

  145. Drew AC, Eusebius NP, Kenins L, et al. Hypoallergenic variants of the major latex allergen Hev b 6.01 retaining human T lymphocyte reactivity. J Immunol 2004;173:5872–9.

    Google Scholar 

  146. Ferreira F, Ebner C, Kramer B, et al. Modulation of IgE reactivity of allergens by site-directed mutagenesis: potential use of hypoallergenic variants for immunotherapy. FASEB J 1998;12:231–42.

    Google Scholar 

  147. Ferreira F, Rohlfs A, Hoffmann-Sommergruber K, et al. Modulation of IgE-binding properties of tree pollen allergens by site-directed mutagenesis. Adv Exp Med Biol. 1996;409:127–35.

    Article  PubMed  CAS  Google Scholar 

  148. Okada T, Swoboda I, Bhalla PL, Toriyama K, Singh MB. Engineering of hypoallergenic mutants of the Brassica pollen allergen, Bra r 1, for immunotherapy. FEBS Lett 1998;434:255–60.

    Google Scholar 

  149. Rabjohn P, West CM, Connaughton C, et al. Modification of peanut allergen Ara h 3: effects on IgE binding and T cell stimulation. Int Arch Allergy Immunol 2002;128:15–23.

    Google Scholar 

  150. Stanley JS, King N, Burks AW, et al. Identification and mutational analysis of the immunodominant IgE binding epitopes of the major peanut allergen Ara h 2. Archives of biochemistry and biophysics 1997;342:244–53.

    Google Scholar 

  151. Swoboda I, Bugajska-Schretter A, Linhart B, et al. A recombinant hypoallergenic parvalbumin mutant for immunotherapy of IgE-mediated fish allergy. J Immunol 2007;178:6290–6.

    Google Scholar 

  152. Swoboda I, De Weerd N, Bhalla PL, et al. Mutants of the major ryegrass pollen allergen, Lol p 5, with reduced IgE-binding capacity: candidates for grass pollen-specific immunotherapy. Eur J Immunol 2002;32:270–80.

    Google Scholar 

  153. Niederberger V, Horak F, Vrtala S, et al. Vaccination with genetically engineered allergens prevents progression of allergic disease. Proc Natl Acad Sci U S A 2004;101 Suppl 2:14677–82.

    Google Scholar 

  154. Fellrath JM, Kettner A, Dufour N, et al. Allergen-specific T-cell tolerance induction with allergen-derived long synthetic peptides: results of a phase I trial. J Allergy Clin Immunol 2003;111:854–61.

    Google Scholar 

  155. Focke-Tejkl M, Valenta R. Safety of engineered allergen-specific immunotherapy vaccines. Curr Opin Allergy Clin Immunol 2012;12:555–63.

    Google Scholar 

  156. Larche M. Immunoregulation by targeting T cells in the treatment of allergy and asthma. Curr Opin Immunol 2006;18:745–50.

    Google Scholar 

  157. Jutel M, Jaeger L, Suck R, Meyer H, Fiebig H, Cromwell O. Allergen-specific immunotherapy with recombinant grass pollen allergens. J Allergy Clin Immunol. 2005;116:608–13.

    Article  PubMed  CAS  Google Scholar 

  158. Pauli G, Larsen TH, Rak S, et al. Efficacy of recombinant birch pollen vaccine for the treatment of birch-allergic rhinoconjunctivitis. J Allergy Clin Immunol. 2008;122:951–60.

    Article  PubMed  CAS  Google Scholar 

  159. Vrtala S, Hirtenlehner K, Susani M, Akdis M, Kussebi F, Akdis CA, et al. Genetic engineering of a hypoallergenic trimer of the major birch pollen allergen Bet v 1. FASEB J. 2001;15(11):2045–7.

    Google Scholar 

  160. Vrtala S, Hirtenlehner K, Vangelista L, et al. Conversion of the major birch pollen allergen, Bet v 1, into two nonanaphylactic T cell epitope-containing fragments: candidates for a novel form of specific immunotherapy. J Clin Invest. 1997;99:1673–81.

    Article  PubMed  CAS  Google Scholar 

  161. Egger C, Horak F, Vrtala S, Valenta R, Niederberger V. Nasal application of rBet v 1 or non-IgE-reactive T-cell epitope-containing rBet v 1 fragments has different effects on systemic allergen-specific antibody responses. J Allergy Clin Immunol. 2010;126:1312–5. e4.

    Article  PubMed  CAS  Google Scholar 

  162. Pree I, Shamji MH, Kimber I, Valenta R, Durham SR, Niederberger V. Inhibition of CD23-dependent facilitated allergen binding to B cells following vaccination with genetically modified hypoallergenic Bet v 1 molecules. Clin Exp Allergy. 2010;40:1346–52.

    Article  PubMed  CAS  Google Scholar 

  163. Reisinger J, Horak F, Pauli G, et al. Allergen-specific nasal IgG antibodies induced by vaccination with genetically modified allergens are associated with reduced nasal allergen sensitivity. J Allergy Clin Immunol. 2005;116:347–54.

    Article  PubMed  CAS  Google Scholar 

  164. Gafvelin G, Thunberg S, Kronqvist M, et al. Cytokine and antibody responses in birch-pollen-allergic patients treated with genetically modified derivatives of the major birch pollen allergen Bet v 1. Int Arch Allergy Immunol. 2005;138:59–66.

    Article  PubMed  CAS  Google Scholar 

  165. Purohit A, Niederberger V, Kronqvist M, et al. Clinical effects of immunotherapy with genetically modified recombinant birch pollen Bet v 1 derivatives. Clin Exp Allergy. 2008;38:1514–25.

    Article  PubMed  CAS  Google Scholar 

  166. van Hage-Hamsten M, Kronqvist M, Zetterstrom O, et al. Skin test evaluation of genetically engineered hypoallergenic derivatives of the major birch pollen allergen, Bet v 1: results obtained with a mix of two recombinant Bet v 1 fragments and recombinant Bet v 1 trimer in a Swedish population before the birch pollen season. J Allergy Clin Immunol 1999;104:969–77.

    Google Scholar 

  167. Niederberger V, Reisinger J, Valent P, Krauth MT, Pauli G, van Hage M, et al. Vaccination with genetically modified birch pollen allergens: immune and clinical effects on oral allergy syndrome. J Allergy Clin Immunol. 2007;119(4):1013–6.

    Google Scholar 

  168. Kundig TM, Senti G, Schnetzler G, et al. Der p 1 peptide on virus-like particles is safe and highly immunogenic in healthy adults. J Allergy Clin Immunol. 2006;117:1470–6.

    Article  PubMed  CAS  Google Scholar 

  169. • Senti G, Johansen P, Haug S, et al. Use of A-type CpG oligodeoxynucleotides as an adjuvant in allergen-specific immunotherapy in humans: a phase I/IIa clinical trial. Clin Exp Allergy. 2009;39:562–70. Study evaluated a virus-like particle as an adjuvant for dust mite AIT.

  170. Djurup R, Malling HJ. High IgG4 antibody level is associated with failure of immunotherapy with inhalant allergens. Clin Allergy. 1987;17:459–68.

    Article  PubMed  CAS  Google Scholar 

  171. Edlmayr J, Niespodziana K, Linhart B, et al. A combination vaccine for allergy and rhinovirus infections based on rhinovirus-derived surface protein VP1 and a nonallergenic peptide of the major timothy grass pollen allergen Phl p 1. J Immunol. 2009;182:6298–306.

    Article  PubMed  CAS  Google Scholar 

  172. Maguire P, Nicodemus C, Robinson D, Aaronson D, Umetsu DT. The safety and efficacy of ALLERVAX CAT in cat allergic patients. Clin Immunol. 1999;93:222–31.

    Article  PubMed  CAS  Google Scholar 

  173. Norman PS, Ohman Jr JL, Long AA, et al. Treatment of cat allergy with T-cell reactive peptides. Am J Respir Crit Care Med. 1996;154:1623–8.

    PubMed  CAS  Google Scholar 

  174. Pene J, Desroches A, Paradis L, et al. Immunotherapy with Fel d 1 peptides decreases IL-4 release by peripheral blood T cells of patients allergic to cats. J Allergy Clin Immunol. 1998;102:571–8.

    Article  PubMed  CAS  Google Scholar 

  175. Simons FE, Imada M, Li Y, Watson WT, HayGlass KT. Fel d 1 peptides: effect on skin tests and cytokine synthesis in cat-allergic human subjects. Int Immunol. 1996;8:1937–45.

    Article  PubMed  CAS  Google Scholar 

  176. Haselden BM, Kay AB, Larche M. Immunoglobulin E-independent major histocompatibility complex-restricted T cell peptide epitope-induced late asthmatic reactions. J Exp Med. 1999;189:1885–94.

    Article  PubMed  CAS  Google Scholar 

  177. Haselden BM, Syrigou E, Jones M, et al. Proliferation and release of IL-5 and IFN-gamma by peripheral blood mononuclear cells from cat-allergic asthmatics and rhinitics, non-cat-allergic asthmatics, and normal controls to peptides derived from Fel d 1 chain 1. J Allergy Clin Immunol. 2001;108:349–56.

    Article  PubMed  CAS  Google Scholar 

  178. Alexander C, Tarzi M, Larche M, Kay AB. The effect of Fel d 1-derived T-cell peptides on upper and lower airway outcome measurements in cat-allergic subjects. Allergy. 2005;60:1269–74.

    Article  PubMed  CAS  Google Scholar 

  179. Alexander C, Ying S, A BK, Larche M. Fel d 1-derived T cell peptide therapy induces recruitment of CD4+ CD25+; CD4+ interferon-gamma+ T helper type 1 cells to sites of allergen-induced late-phase skin reactions in cat-allergic subjects. Clin Exp Allergy. 2005;35(1):52–8.

    Google Scholar 

  180. Oldfield WL, Kay AB, Larche M. Allergen-derived T cell peptide-induced late asthmatic reactions precede the induction of antigen-specific hyporesponsiveness in atopic allergic asthmatic subjects. J Immunol. 2001;167:1734–9.

    PubMed  CAS  Google Scholar 

  181. Oldfield WL, Larche M, Kay AB. Effect of T-cell peptides derived from Fel d 1 on allergic reactions and cytokine production in patients sensitive to cats: a randomised controlled trial. Lancet. 2002;360:47–53.

    Article  PubMed  CAS  Google Scholar 

  182. Smith TR, Alexander C, Kay AB, Larche M, Robinson DS. Cat allergen peptide immunotherapy reduces CD4(+) T cell responses to cat allergen but does not alter suppression by CD4(+) CD25(+) T cells: a double-blind placebo-controlled study. Allergy. 2004;59:1097–101.

    Article  PubMed  CAS  Google Scholar 

  183. Verhoef A, Alexander C, Kay AB, Larche M. T cell epitope immunotherapy induces a CD4+ T cell population with regulatory activity. PLoS Med. 2005;2:e78.

    Article  PubMed  CAS  Google Scholar 

  184. Campbell JD, Buckland KF, McMillan SJ, et al. Peptide immunotherapy in allergic asthma generates IL-10-dependent immunological tolerance associated with linked epitope suppression. J Exp Med. 2009;206:1535–47.

    Article  PubMed  CAS  Google Scholar 

  185. • Worm M, Lee HH, Kleine-Tebbe J, et al. Development and preliminary clinical evaluation of a peptide immunotherapy vaccine for cat allergy. J Allergy Clin Immunol. 2011;127:89–97. e1–14. Demonstrated that one administration of aT cell epitope vaccine suppressed late-phase skin reactions.

    Article  PubMed  CAS  Google Scholar 

  186. • Patel D, Couroux P, Hickey P, et al. Fel d 1-derived peptide antigen desensitization shows a persistent treatment effect 1 year after the start of dosing: A randomized, placebo-controlled study. J Allergy Clin Immunol 2012. Demonstrates the efficacy andsafety of petide immunotherapy with a modified cat vaccine.

  187. Horak F, Zieglmayer P, Zieglmayer R, et al. Early onset of action of a 5-grass-pollen 300-IR sublingual immunotherapy tablet evaluated in an allergen challenge chamber. J Allergy Clin Immunol. 2009;124:471–7. 7 e1.

    Article  PubMed  CAS  Google Scholar 

  188. Berkowitz RB, Braker S, Lutz C, et al. Efficacy of fexofenadine in the prophylactic control of cat allergen-induced allergic rhinitis. Ann Allergy Asthma Immunol. 2006;96:327–33.

    Article  PubMed  CAS  Google Scholar 

  189. Carballido JM, Carballido-Perrig N, Kagi MK, et al. T cell epitope specificity in human allergic and nonallergic subjects to bee venom phospholipase A2. J Immunol 1993;150:3582–91.

    Google Scholar 

  190. Muller U, Akdis CA, Fricker M, et al. Successful immunotherapy with T-cell epitope peptides of bee venom phospholipase A2 induces specific T-cell anergy in patients allergic to bee venom. J Allergy Clin Immunol. 1998;101:747–54.

    Article  PubMed  CAS  Google Scholar 

  191. Texier C, Pouvelle S, Busson M, et al. HLA-DR restricted peptide candidates for bee venom immunotherapy. J Immunol. 2000;164:3177–84.

    PubMed  CAS  Google Scholar 

  192. Tarzi M, Klunker S, Texier C, et al. Induction of interleukin-10 and suppressor of cytokine signalling-3 gene expression following peptide immunotherapy. Clin Exp Allergy. 2006;36:465–74.

    Article  PubMed  CAS  Google Scholar 

  193. de Boissieu D, Dupont C. Sublingual immunotherapy for cow's milk protein allergy: a preliminary report. Allergy. 2006;61:1238–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Larche is funded by the Canada Research Chairs program, the Canadian Institutes for Health Research (CIHR), National Institutes for Allergy & Infectious Diseases (NIAID), AllerGen Network of Centres of Excellence, the Canada Foundation for Innovation, Adiga Life Sciences Inc., and the McMaster University/GSK endowed Chair in Lung Immunology at St Joseph's Healthcare. Dr .Kundig’s investigator–initiated studies are financially supported by the Swiss National Science Foundation (SNSF), the University of Zurich, Medanz Medical GmbH (Starnberg, Germany), and Allergy Innovations (Munich, Germany).

Disclosure

Dr. Cox has provided consulting services for Stallergenes and Genentech and has served on a safety data monitoring committee for Circassia and Novartis.

Dr. Compalati is funded by the University of Genoa, Italy, for clinical research and has received a grant for scientific consultancy by Lofarma S.p.A., a manufacturer of products for allergen specific immunotherapy, within the past 2 years.

Dr. Larche is a founder, shareholder and Dr.Kundig is named as the inventor on a patent on intralymphatic immunotherapy and as one of the inventors on a patent on epicutaneous immunotherapy; the patents are owned by the University of Zurich. consultant of/to Circassia Ltd., a company developing peptide-based immunotherapy and is scientific founder of Adiga Life Sciences Inc., a joint venture between Circassia Ltd. and McMaster University.

Dr. Kundig reported no potential conflicts of interest relevant to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Cox.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cox, L., Compalati, E., Kundig, T. et al. New Directions in Immunotherapy. Curr Allergy Asthma Rep 13, 178–195 (2013). https://doi.org/10.1007/s11882-012-0335-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-012-0335-7

Keywords

Navigation