Skip to main content
Log in

Importance of mold allergy in asthma

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Fungal exposure is hypothesized (controversially) to contribute to asthma development and to trigger symptoms in patients with asthma. The ubiquity of environmental fungal exposure makes a careful review of evidence essential. Evidence that exposure to high concentrations of fungal spores, antigens, or metabolites is associated with asthma development is limited. However, because mechanisms of asthma genesis are poorly understood, so too are the mechanisms of this potential association. This association is not proof of causality. Stronger evidence supports the hypothesis that fungal exposure triggers symptoms in asthmatic individuals. Proposed mechanisms have been tested and correlations between exposure and symptoms demonstrated. Though some correlations remain speculative, controlled studies could test such hypotheses. Because asthma is common and fungal exposure is ubiquitous, it is surprising that asthmatics don’t have more symptoms when exposed to fungi. Fortunately, symptoms are dose dependent, creating an opportunity to develop clinically effective interventions. Given the right guidance, even patients with severe asthma can create healthy indoor environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Alexopoulos CJ, Mims CW, Blackwell M: Introductory Mycology, edn 4. New York: John Wiley & Sons; 1996.

    Google Scholar 

  2. Ryan KJ, Ray CG: Sherris Medical Microbiology, edn 4. New York: McGraw-Hill; 2004:633–638.

    Google Scholar 

  3. Shelton B, Kirkland KH, Flanders WD, et al.: Profiles of airborne fungi in buildings and outdoor environments in the United States. Appl Environ Microbiol 2002, 68:1743–1753.

    Article  PubMed  CAS  Google Scholar 

  4. Green B, Tovey ER, Sercombe JK, et al.: Airborne fungal fragments and allergenicity. Med Mycol 2006, 44(Suppl 1):S245–S255.

    Article  PubMed  CAS  Google Scholar 

  5. Portnoy J, Flappan S, Barnes C: A procedure for evaluation of the indoor environment. Aerobiologia 2001, 17:43–48.

    Article  Google Scholar 

  6. Salo PM, Arbes SJ Jr, Sever M, et al.: Dustborne Alternaria alternata antigens in US homes: results from the National Survey of Lead and Allergens in Housing. J Allergy Clin Immunol 2005, 116:623–629.

    Article  PubMed  Google Scholar 

  7. Simons E: Ancestors of Allergy. New York: Global Medical Communications; 1994:146.

    Google Scholar 

  8. Denis O, van den Brûle S, Heymans J, et al.: Chronic intranasal administration of mould spores or extracts to unsensitized mice leads to lung allergic inflammation, hyper-reactivity and remodelling. Immunology 2007, 122:268–278.

    Article  PubMed  CAS  Google Scholar 

  9. Garrett M, Rayment PR, Hooper MA, et al.: Indoor airborne fungal spores, house dampness and associations with environmental factors and respiratory health in children. Clin Exp Allergy 1998, 28:459–467.

    Article  PubMed  CAS  Google Scholar 

  10. Gallup J, Kozak P, Cummins L, et al.: Indoor mold spore exposure: characteristics of 127 homes in Southern California with endogenous mold problems. EXS 1987, 51:139–142.

    CAS  Google Scholar 

  11. Stark P, Burge HA, Ryan LM, et al.: Fungal levels in the home and lower respiratory tract illnesses in the first year of life. Am J Respir Crit Care Med 2003, 168:232–237.

    Article  PubMed  Google Scholar 

  12. O’Driscoll BR, Hopkinson LC, Denning DW: Mold sensitization is common amongst patients with severe asthma requiring multiple hospital admissions. BMC Pulm Med 2005, 5:4.

    Article  PubMed  Google Scholar 

  13. Chiu LL, Perng DW, Yu CH, et al.: Mold allergen, pen C 13, induces IL-8 expression in human airway epithelial cells by activating protease-activated receptor 1 and 2. J Immunol 2007, 178:5237–5244.

    PubMed  CAS  Google Scholar 

  14. Shen HD, Chou H, Tam MF, et al.: Molecular and immunological characterization of Pen ch 18, the vacuolar serine protease major allergen of Penicillium chrysogenum. Allergy 2003, 58:993–1002.

    Article  PubMed  CAS  Google Scholar 

  15. Chapman M, Wünschmann S, Pomés A: Proteases as th2 adjuvants. Curr Allergy Asthma Rep 2007, 7:363–367.

    Article  PubMed  CAS  Google Scholar 

  16. Alarie Y, Schaper M, Nielsen GD, Abraham MH: Estimating the sensory irritating potency of airborne nonreactive volatile organic chemicals and their mixtures. SAR QSAR Environ Res 1996, 5:151–165.

    Article  PubMed  Google Scholar 

  17. Fischer G, Dott W: Relevance of airborne fungi and their secondary metabolites for environmental, occupational and indoor hygiene. Arch Microbiol 2003, 179:75–82.

    PubMed  CAS  Google Scholar 

  18. Schnurer J: Comparison of methods for estimating the biomass of three food-borne fungi with different growth patterns. Appl Environ Microbiol 1993, 59:552–555.

    PubMed  CAS  Google Scholar 

  19. Rylander R, Lin R: (1—>3)-beta-D-glucan—relationship to indoor air-related symptoms, allergy and asthma. Toxicology 2000, 152:47–52.

    Article  PubMed  CAS  Google Scholar 

  20. Rylander R, Norrhall M, Engdahl U, et al.: Airways inflammation, atopy, and (1—>3)-beta-D-glucan exposures in two schools. Am J Respir Crit Care Med 1998, 158:1685–1687.

    PubMed  CAS  Google Scholar 

  21. Rylander R, Holt P: (1—>3)-beta-D-glucan and endotoxin modulate immune response to inhaled allergen. Mediators Inflamm 1998, 7:105–110.

    Article  PubMed  CAS  Google Scholar 

  22. el-Maghraby OM, Bean GA, Jarvis BB, Aboul-Nasr MB: Macrocyclic trichothecenes produced by Stachybotrrys isolated from Egypt and eastern Europe. Mycopathologia 1991, 113:109–115.

    Article  PubMed  CAS  Google Scholar 

  23. Hanelt M, Gareis M, Kollarczik B: Cytotoxicity of mycotoxins evaluated by the MTT-cell culture assay. Mycopathologia 1994, 128:167–174.

    Article  PubMed  CAS  Google Scholar 

  24. Johanning E: Bioaerosols, Fungi and Mycotoxins: Health Effects, Assessment, Prevention and Control. Albany, NY: Eastern New York Occupational and Environmental Health Center (OEHC); 1999.

    Google Scholar 

  25. Douwes J, Pearce N: Invited commentary: is indoor mold exposure a risk factor for asthma? Am J Epidemiol 2003, 158:203–206.

    Article  PubMed  Google Scholar 

  26. Brunekreef B, Dockery DW, Speizer FE, et al.: Home dampness and respiratory morbidity in children. Am Rev Respir Dis 1989, 140:1363–1367.

    PubMed  CAS  Google Scholar 

  27. Kilpeläinen M, Terho EO, Helenius H, Koskenvuo M: Home dampness, current allergic diseases, and respiratory infections among young adults. Thorax 2001, 56:462–467.

    Article  PubMed  Google Scholar 

  28. Verhoeff A, Burge H: Health risk assessment of fungi in home environments. Ann Allergy Asthma Immunol 1997, 78:544–554.

    PubMed  CAS  Google Scholar 

  29. Verhoeff AP, van Strien RT, van Wijnen JH, et al.: Damp housing and childhood respiratory symptoms: the role of sensitization to dust mites and molds. Am J Epidemiol 1995, 141:103–110.

    PubMed  CAS  Google Scholar 

  30. Zureik M, Neukirch C, Leynaert B, et al.: Sensitisation to airborne moulds and severity of asthma: cross sectional study from European Community respiratory health survey. BMJ 2002, 325:411.

    Article  PubMed  Google Scholar 

  31. Institute of Medicine: Damp Indoor Spaces and Health. Washington, DC: National Academy of Sciences, Board on Health Promotion and Disease Prevention, National Academies Press; 2004.

    Google Scholar 

  32. Gergen P, Turkeltaub P: The association of individual allergen reactivity with respiratory disease in a national sample: data from the second National Health and Nutrition Examination Survey, 1976–80 (NHANES II). J Allergy Clin Immunol 1992, 90(4 Pt 1):579–588.

    Article  PubMed  CAS  Google Scholar 

  33. O’Connor G, Walter M, Mitchell H, et al.: Airborne fungi in the homes of children with asthma in low-income urban communities: the Inner-City Asthma Study. J Allergy Clin Immunol 2004, 114:599–606.

    Article  PubMed  Google Scholar 

  34. Jaakkola M, Ieromnimon A, Jaakkola J: Are atopy and specific IgE to mites and molds important for adult asthma? J Allergy Clin Immunol 2006, 117:642–648.

    Article  PubMed  CAS  Google Scholar 

  35. Koskinen O, Husman TM, Meklin TM, et al.: The relationship between moisture or mould observations in houses and the state of health of their occupants. Eur Respir J 1999, 14:1363–1367.

    Article  PubMed  CAS  Google Scholar 

  36. Clark N, Brown RW, Parker E, et al.: Childhood asthma. Environ Health Perspect 1999, 107(Suppl 3):421–429.

    PubMed  Google Scholar 

  37. Halonen M, Stern DA, Wright AL, et al.: Alternaria as a major allergen for asthma in children raised in a desert environment. Am J Respir Crit Care Med 1997, 155:1356–1361.

    PubMed  CAS  Google Scholar 

  38. Niedoszytko M, Chelmiska M, Jassem E, Czestochowska E: Association between sensitization to Aureobasidium pullulans (Pullularia sp) and severity of asthma. Ann Allergy Asthma Immunol 2007, 98:153–156.

    PubMed  Google Scholar 

  39. Zock J, Jarvis D, Luczynska C, et al.: Housing characteristics, reported mold exposure, and asthma in the European Community Respiratory Health Survey. J Allergy Clin Immunol 2002, 110:285–292.

    Article  PubMed  Google Scholar 

  40. Newson R, Strachan D, Corden J, et al.: Fungal and other spore counts as predictors of admissions for asthma in the Trent region. Occup Environ Med 2000, 57:786–792.

    Article  PubMed  CAS  Google Scholar 

  41. Targonski P, Persky V, Ramekrishnan V: Effect of environmental molds on risk of death from asthma during the pollen season. J Allergy Clin Immunol 1995, 95(5 Pt 1):955–961.

    Article  PubMed  CAS  Google Scholar 

  42. Salvaggio J, Aukrust L: Mold induced asthma. J Allergy Clin Immunol 1981, 68:327–346.

    Article  PubMed  CAS  Google Scholar 

  43. Salvaggio J, Seabury J, Schoenhardt E: New Orleans asthma. V. Relationship between Charity Hospital asthma admission rates, semiquantitative pollen and fungal spore counts, and total particulate aerometric sampling data. J Allergy Clin Immunol 1971, 48:96–114.

    Article  PubMed  CAS  Google Scholar 

  44. O’Hollaren M, Yunginger JW, Offord KP, et al.: Exposure to an aeroallergen as a possible precipitating factor in respiratory arrest in young patients with asthma. N Engl J Med 1991 324:359–363.

    Article  PubMed  CAS  Google Scholar 

  45. Pulimood TB, Corden JM, Bryden C, et al.: Epidemic asthma and the role of the mold Alternaria alternata. J Allergy Clin Immunol, 2007, 120:610–617.

    Article  PubMed  Google Scholar 

  46. Portnoy J, Brothers D, Pacheco F, et al.: A double monoclonal antibody assay for the Alternaria Allergen, Alt a1. Ann Allergy Asthma Immunol 1998, 81:59–64.

    PubMed  CAS  Google Scholar 

  47. Achatz G, Oberkofler H, Lechenauer E, et al.: Molecular cloning of major and minor allergens of Alternaria alternata and Caldosporium herbarium. Mol Immunol 1995, 32:213–227.

    Article  PubMed  CAS  Google Scholar 

  48. Agarwal MK, Jones RT, Yunginger JW: Shared allergen and antigenic determinants in Alternaria and Stemphylium extracts. J Allergy Clin Immunol 1982, 70:437–444.

    Article  PubMed  CAS  Google Scholar 

  49. Belanger K, Beckett W, Triche E, et al.: Symptoms of wheeze and persistent cough in the first year of life: associations with indoor allergens, air contaminants, and maternal history of asthma. Am J Epidemiol 2003, 158:195–202.

    Article  PubMed  Google Scholar 

  50. Gent J, Ren P, Belanger K, et al.: Levels of household mold associated with respiratory symptoms in the first year of life in a cohort at risk for asthma. Environ Health Perspect 2002, 110:A781–A786.

    Article  PubMed  Google Scholar 

  51. Eggleston P: Control of environmental allergens as a therapeutic approach. Immunol Allergy Clin North Am 2003, 23:533–547, viii–ix.

    Article  PubMed  Google Scholar 

  52. Kercsmar C, Dearborn DG, Schluchter M, et al.: Reduction in asthma morbidity in children as a result of home remediation aimed at moisture sources. Environ Health Perspect 2006, 114:1574–1580.

    Article  PubMed  Google Scholar 

  53. Morgan W, Crain EF, Gruchalla RS, et al.: Results of a home-based environmental intervention among urban children with asthma. N Engl J Med 2004, 351:1068–1080.

    Article  PubMed  CAS  Google Scholar 

  54. Matsui E, Kagey-Sobotka A, Chichester K, et al.: Allergic potency of recombinant Fel d 1 is reduced by low concentrations of chlorine bleach. J Allergy Clin Immunol 2003, 111:396–401.

    Article  PubMed  CAS  Google Scholar 

  55. Nickmilder M, Carbonnelle S, Bernard A: House cleaning with chlorine bleach and the risks of allergic and respiratory diseases in children. Pediatr Allergy Immunol 2007, 18:27–35.

    Article  PubMed  Google Scholar 

  56. Barnes CS, Portnoy JM, Kennedy K: The impact of home cleaning on quality of life for homes with asthmatic children. Allergy Asthma Proceedings 2007, In press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay M. Portnoy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Portnoy, J.M., Barnes, C.S. & Kennedy, K. Importance of mold allergy in asthma. Curr Allergy Asthma Rep 8, 71–78 (2008). https://doi.org/10.1007/s11882-008-0013-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-008-0013-y

Keywords

Navigation