Skip to main content
Log in

Genetic diversity and relatedness of the mangrove Rhizophora mangle L. (Rhizophoraceae) using amplified fragment polymorphism (AFLP) among locations in Florida, USA and the Caribbean

  • Published:
Journal of Coastal Conservation Aims and scope Submit manuscript

Abstract

Rhizophora mangle L. is a widespread mangrove species in the Western Hemisphere. Mangrove habitat loss and their importance to coastal and reef ecosystems make greater understanding of their genetic structure useful for conservation and management. An amplified fragment polymorphism (AFLP) analysis was performed on samples from Florida and the Caribbean to discover the genetic structure present. R. mangle had variable genetic diversity not related to latitude; P ranged 7 %–92 %. Some other factor, perhaps human impact, has caused low genetic diversity in some populations. Across Florida R. mangle populations varied in genetic diversity with less diversity (Gst = 0.195) and greater gene flow on the Atlantic coast (Nm =2.07) than on the Gulf coast (Gst = 0.717, Nm = 0.197). Gene flow between Caribbean islands was low (Nm = 0.386) compared to continental populations (Nm = 1.40), indicating that long distance dispersal is not common between islands. Analysis of molecular variance (AMOVA) analysis showed significant deviations from Hardy-Weinberg expectations at the level of region among subpopulations and overall genetic difference among subpopulations for R. mangle. One implication for management is that small continental populations and island populations may be genetically isolated and distinct from each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aburto-Oropeza O, Ezcuura E, Danemann G, Valdez V, Murray, Sala E (2008) Mangroves in the Gulf of California increase fishery yields. Proc Natl Acad Sci 105:10456–10459

    Article  Google Scholar 

  • Adeel Z, Pomeroy R (2002) Assessment and management of mangrove ecosystems in developing countries. Trees 16:235–238

    Article  Google Scholar 

  • Alamalakala L, Skoda SR, Foster JE (2008) Amplified fragment length polymorphism used for inter- and intraspecific differentiation of screwworms (Diptera: Calliphoridae). Bull Entomol Res 99:139–149

    Article  Google Scholar 

  • Allen JA (1998) Mangrove as alien species: the case of Hawaii. Global Ecol Biogeog 7:61–71

    Article  Google Scholar 

  • Amar KO, Douek J, Rabinowitz C, Rinkevich B (2008) Employing the Amplified Fragment Length Polymorphism (AFLP) methodology as an efficient population genetic tool for symbiotic Cnidarians. Mar Biotechnol 10:350–357

    Article  Google Scholar 

  • Arbeláez-Corte E, Castillo-Cárdenas MF, Toro-Perea N, Cárdenas-Henao H (2007) Genetic structure of the red mangrove (Rhizophora mangle L.) on the Colombian Pacific detected by microsatellite molecular markers. Hydrobiol 583:321–330

    Article  Google Scholar 

  • Bensch S, Åkesson M (2005) Ten years of AFLP in ecology and evolution: why so few animals. Mol Biol 14:2899–2914

    Google Scholar 

  • Berger U, Glaser M, Koch B, Krause G, Lara R, Saint-Paul U, Schories D, Wolff M (1999) An integrated approach to mangrove dynamics and management. J Coast Conserv 5:125–134

    Article  Google Scholar 

  • Campbell D, Duchesne P, Bernatchez L (2003) AFLP utility for population assignment studies: analytical investigation and empirical comparison with microsatellites. Mol Ecol 12:1979–1991

    Article  Google Scholar 

  • Castillo-Cárdenas MF, Toro-Perea N, Cárdenas-Henao H (2005) Population genetic structure of neotropical mangrove species on the Colombian Pacific coast: Pelliciera rhizophorae (Pellicieraceae). Biotropica 37:266–273

    Article  Google Scholar 

  • Chiang TY, Chiang YC, Chen YJ, Chou CH, Havanond S, Hong TN, Huang S (2001) Phylogeography of Kandelia candel in East Asiatic mangroves based on nucleotide variation of chloroplast and mitochondrial DNAs. Mol Ecol 10:2697–2710

    Article  Google Scholar 

  • Clark PL, Molina-Ochoa J, Martinelli S, Skoda SR, Isenhour DJ, Lee DJ, Krumm JT, Foster JE (2007) Population variation of the fall armyworm. Spodoptera frugiperda, in the Western Hemisphere. J Insect Sci 7:1–10

    Article  Google Scholar 

  • Clinton HR (2010) Tubuserea Lavadai Mangrove Reforestation Project. Port Moresby, Papua New Guinea, November 3, 2010. http://www.state.gov/secretary/rm/2010/11/150367.htm. Accessed 22 March 2011

  • Coastanza R, d’Arge R, De Groot F, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raksin R, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  Google Scholar 

  • Coelho ASG (2001) BOOD-P Avaliação de dendogramas baseados em estimativas de distâncias/similaridades genéticas através do procedimento de bootstrap, Versão 3.0. Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal De Goias, Goiânia

    Google Scholar 

  • Conservation International (2008) Economic values of coral reefs, mangroves, and seagrasses: a global compilation. Center for Applied Biodiversity Science. Conservation International, Arlington

    Google Scholar 

  • Das S, Vincent JR (2009) Mangroves protected villages and reduced death toll during Indian super cyclone. Proceedings of the National Academy of Science Early Edition. doi:10.1073.

  • Dodd RS, Rafii ZA (2002) Evolutionary genetics of mangroves: continental drift to recent climate change. Trees 16:80–86

    Article  Google Scholar 

  • Duke NC, Lo EYY, Sun M (2002) Global distribution and genetic discontinuities of mangroves—emerging patterns in the evolution of Rhizophora. Trees 16:65–79

    Article  Google Scholar 

  • Ellison AM (2002) Macroecology of mangroves: large-scale patterns and processes in tropical coastal forests. Trees 16:181–194

    Article  Google Scholar 

  • Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinformatics Online 1:47–50

    Google Scholar 

  • Field CD (1999) Mangrove rehabilitation: choice and necessity. Hydrobiologia 413:47–52

    Article  Google Scholar 

  • Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Duke N (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecol Biogeog 20:154–159

    Article  Google Scholar 

  • Hogarth PJ (2007) The biology of mangroves and seagrasses, 2nd edn. Oxford University Press, Oxford, 273 pp

    Book  Google Scholar 

  • Kelleher CT, Hodkinson TR, Douglas GC, Kelly DL (2005) Species distinction in Irish populations of Quercus petraea and Q. robur: morphological versus molecular analyses. Ann Bot 96:1237–1246

    Article  Google Scholar 

  • Krumm JT, Hunt TE, Skoda SR, Hein GL, Lee DJ, Clark PL, Foster JE (2008) Genetic variability of the European corn borer, Ostrinia nubilalis, suggests gene flow between populations in the Midwestern United States. J Insect Sci 8:1–12

    Article  Google Scholar 

  • Lakshmi M, Rajalakshmi S, Parani M, Anuratha CS, Parida A (1997) Molecular phylogeny of mangroves I. Use of molecular markers in assissing the intraspecific genetic variability in the mangrove species Acanthus ilicifolius L. (Acanthaceae). Theor Appl Gene 94:1121–1127

    Article  Google Scholar 

  • Luther DA, Greenberg R (2009) Mangroves: a global perspective on the evolution and conservation of their terrestrial vertebrates. Biosci 59(7):602–612

    Article  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Nat Acad Sci 70:3321–3323

    Article  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    Google Scholar 

  • Nettel A, Dodd RS (2007) Drifting propagules and receding swamps: genetic footprints of mangrove recolonization and dispersal along tropical coasts. Evol 61:958–971

    Article  Google Scholar 

  • Nún̄ez-Farfán J, Dominguez CA, Eguiarte LE, Cornejo A, Quijano M, Vargas J, Dirzo R (2002) Genetic divergence among Mexican populations of red mangrove (Rhizophora mangle): geographic and historic effects. Evol Ecol Res 4:1049–1064

    Google Scholar 

  • Peng Y, Li X, Wu K, Peng Y, Chen G (2009) Effect of an integrated mangrove-aquaculture system on aquacultural health. Front Biol China 4:579–584

    Article  Google Scholar 

  • Plaziat JC (1995) Modern and fossil mangroves and mangals: their climactic and biogeographic variability. Marine Paleoenvironmental Analysis from Fossils. Geol Soc Spec Publ 83:73–96

    Article  Google Scholar 

  • Plaziat JC, Cavagnetto C, Koeniguer JC, Baltzer F (2001) History and biogeography of the mangrove ecosystem, based on a critical reassessment of the palontological record. Wetland Ecol Manag 9:161–179

    Article  Google Scholar 

  • Proffitt CE, Travis SE (2010) Red mangrove seedling survival, growth and reproduction: effects of environment and maternal genotype. Estuary Coasts 33:890–901

    Article  Google Scholar 

  • Reef Ball Foundation (2011) The reef ball foundation. http://www.reefball.org/. Accessed 9 Feb 2011

  • Ricklefs RE, Lantham RE (1993) Global Patterns of diversity in mangrove floras. In: Ricklefs RE, Schluter D (eds) Species diversity in ecological communities. University of Chicago Press, Chicago, pp 215–229

    Google Scholar 

  • Salas-Leiva DE, Mayor- Durán VM, Toro-Perea N (2009a) Genetic diversity of black mangrove (Avicennia germinans) in natural and reforested areas of Salamanca Island Parkway, Columbian Caribbean. Hydrobiologica 620:17–24

    Article  Google Scholar 

  • Salas-Leiva DE, Mayor-Durán VM, Toro-Perea N (2009b) Genetic diversity of the black mangrove (Avicennia germinans L.) in Colombia. Aqua Biol 91:187–193

    Google Scholar 

  • Schönswetter P, Tribsch A, Niklfeld H (2004) Amplified fragment length polymorphism (AFLP) suggests old and recent immigration into the Alps by the arctic-alpine annual Comastoma tenellum (Gentianaceae). J Biogeog 31:1673–1681

    Article  Google Scholar 

  • Schwarzbach AE, Ricklefs RE (2001) The use of molecular data in mangrove plant research. Wetl Ecol Manage 9:195–201

    Article  Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    Article  Google Scholar 

  • Spalding M, Blanco F, Field C (1997) World mangrove atlas. The International Society for Mangrove Ecosystems, Okinawa, 178 pp

    Google Scholar 

  • Thermo Fisher Scientific (2009) NanoDrop 2000c Spectrophotometer. V1.0 User Manual. Online. www.nanodrop.com

  • UNEP-WCMC (2006) In the front line: shoreline protection and other ecosystem services from mangroves and coral reefs. UNEP-WCMC, Cambridge, p 33

    Google Scholar 

  • Valiela I, Bowen JL, York JK (2001) Mangrove forests: one of the world’s threatened major tropical environments. Biosci 51:807–815

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  Google Scholar 

  • Wright S (1978) Evolution and the genetics of populations vol. 4, Variability within and among natural populations. University of Chicago Press, Chicago

    Google Scholar 

  • Yeh FC, Yang R-C, Boyle TBJ, Ye ZH, Mao JX (1997) POPGENE: A Microsoft Window® -based freeware for population genetic analysis. Version 1.32. Canada: University of Alberta and Centre for International Forestry. Available at http://www.valberta.ca/~fyeh/fyeh

  • Ziegler F, Rees A, Rowley D (2001) The paleographic atlas project. University of Chicago. http://www.geo.arizona.edu/~rees/PGAPhome.htm. Accessed 21 March 2011

Download references

Acknowledgments

We would like to acknowledge Mike Barandiaran, Nathan Barrett, Tom Champeau, Mike Evans, Genady Filkovsky, Mark Mort, Emma Speer, and Heather Tracy all of whom helped directly in this project. Without their excellent work and sacrifice this paper would not have been possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Albrecht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albrecht, M., Kneeland, K.M., Lindroth, E. et al. Genetic diversity and relatedness of the mangrove Rhizophora mangle L. (Rhizophoraceae) using amplified fragment polymorphism (AFLP) among locations in Florida, USA and the Caribbean. J Coast Conserv 17, 483–491 (2013). https://doi.org/10.1007/s11852-013-0246-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11852-013-0246-3

Keywords

Navigation