Skip to main content

Advertisement

Log in

Assessment of the aquatic biodiversity of a threatened coastal lagoon at Bimini, Bahamas

  • Published:
Journal of Coastal Conservation Aims and scope Submit manuscript

Abstract

Coastal biodiversity is threatened worldwide by both direct and indirect anthropogenic activities. To more effectively manage and protect coastal biodiversity, accurate assessments of genetic, species, and ecosystem level diversity are required. We present the results from an assessment of the aquatic species diversity of a small (3 km2), shallow, mangrove-fringed Bahamian lagoon (the North Sound) subject to ongoing anthropogenic development. The assessment was conducted through a collation of field observations and data in published literature. We found that eight angiosperm species, 30 macroalgal species, and 370 animal species (including 95 fishes, 69 arthropods, 56 birds, and 45 mollusks) were documented within the lagoon. At least 11 of these species are of conservation concern, such as the critically endangered smalltooth sawfish (Pristis pectinata) and hawksbill turtle (Eretmochelys imbricata). Comparisons of community similarity indicated that the North Sound has a relatively distinct fauna and flora, but available data suggest that the species found there are most similar to those found in nearby habitats in Cuba. The lagoon forms a key nursery habitat for many species, including lemon sharks (Negaprion brevirostris), Caribbean spiny lobsters (Panulirus argus), and queen conch (Strombas gigas). Recently, the lagoon was included as part of a new marine protected area (MPA), but much of the habitat has already experienced considerable anthropogenic disturbance and the MPA boundaries have yet to be established. We have therefore analyzed the lagoon biodiversity and expect the data presented here to serve as a baseline for future comparisons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aburto-Oropeza O, Ezcurra E, Danemann G, Valdez V, Murray J, Sala E (2008) Mangroves in the Gulf of California increase fishery yields. Proc Natl Acad Sci U S A 105:10456–10459

    Article  CAS  Google Scholar 

  • Adams AJ et al (2006) Nursery function of tropical back-reef systems. Mar Ecol Prog Ser 318:287–301

    Article  Google Scholar 

  • Afonso AS, Gruber SH (2007) Pueruli settlement in the Caribbean spiny lobster, Panulirus argus, at Bimini, Bahamas. Crustaceana 80:1355–1371

    Article  Google Scholar 

  • Airoldi L, Balata D, Beck MW (2008) The Gray Zone: relationships between habitat loss and marine diversity and their applications in conservation. J Exp Mar Biol Ecol 366:8–15

    Article  Google Scholar 

  • Alongi DM (2002) Present state and future of the world’s mangrove forests. Environ Conservat 29:331–349

    Google Scholar 

  • Anderson C, Lee SY (1995) Defoliation of the mangrove Avicennia marina in Hong Kong: causes and consequences. Biotropica 27:218–226

    Article  Google Scholar 

  • Angel MV (1993) Biodiversity of the pelagic ocean. Conserv Biol 7:760–772

    Article  Google Scholar 

  • Badola R, Hussain SA (2005) Valuing ecosystem functions: an empirical study on the storm protection function of Bhitarkanika mangrove ecosystem, India. Environ Conservat 32:85–92

    Article  Google Scholar 

  • Baelde P (1990) Differences in the structures of fish assemblages in Thalassia testudinum beds in Guadeloupe, French West Indies, and their ecological significance. Mar Biol 105:163–173

    Article  Google Scholar 

  • Bouchereau J-L, PdT C, Monti D (2008) Factors structuring the ichthyofauna assemblage in a mangrove lagoon (Guadeloupe, French West Indies). J Coast Res 24:969–982

    Article  Google Scholar 

  • Brook BW, Sodhi NS, Ng PKL (2003) Catastrophic extinctions follow deforestation in Singapore. Nature 424:420–423

    Article  CAS  Google Scholar 

  • Buchan KC (2000) The Bahamas. Mar Pollut Bull 41:94–111

    Article  CAS  Google Scholar 

  • Casares FA, Creed JC (2008) Do small seagrasses enhance density, richness, and diversity of macrofauna? J Coast Res 24:790–797

    Article  Google Scholar 

  • Cedeno J, Jimenez Prieto M, Pereda L, Allen T (2010) Abundance and richness of mollusks and crustaceans associated to the submerged roots of red mangrove (Rluzophora mangle) at Bocaripo Lagoon, Sucre, Venezuela. Rev Biol Trop 58:213–226

    Google Scholar 

  • Chapman DD et al (2009) Long-term natal site-fidelity by immature lemon sharks (Negaprion brevirostris) at a subtropical island. Mol Ecol 18:3500–3507

    Article  Google Scholar 

  • Chavez EA (2009) Potential production of the Caribbean spiny lobster (Decapoda, Palinura) fisheries. Crustaceana 82:1393–1412

    Article  Google Scholar 

  • Cortes E, Gruber SH (1990) Diet, feeding habits and estimates of daily ration of young lemon sharks, Negaprion brevirostris (Poey). Copeia 1990(1):204–218

    Article  Google Scholar 

  • Dahlgren CP (2002) Marine reserves in the Bahamas. Bahamas Journal of Science 9:41–49

    Google Scholar 

  • Das S, Vincent JR (2009) Mangroves protected villages and reduced death toll during Indian super cyclone. Proc Natl Acad Sci U S A 106:7357–7360

    Article  CAS  Google Scholar 

  • de Jesus-Navarrete A, Medina-Quej A, Oliva-Rivera JJ (2003) Changes in the queen conch (Strombus gigas L.) population structure at Banco Chinchorro, Quintana Roo, Mexico, 1990–1997. Bull Mar Sci 73:219–229

    Google Scholar 

  • de la Guardia E, Gonzalez-Sanson G, Aguilar C (2003) Marine biodiversity of Guanal coastal lagoon, Cayo Largo, Cuba. Revista de Investigaciones Marinas 24:111–116

    Google Scholar 

  • de Laubenfels MW (1949) Sponges of the western Bahamas. American Museum Novitates 1431

  • Dorenbosch M, van Riel MC, Nagelkerken I, van der Velde G (2004) The relationship of reef fish densities to the proximity of mangrove and seagrass nurseries. Estuar Coast Shelf Sci 60:37–48

    Article  Google Scholar 

  • Duffy JE (2006) Biodiversity and the functioning of seagrass ecosystems. Mar Ecol Prog Ser 311:233–250

    Article  Google Scholar 

  • Duffy JE (2009) Why biodiversity is important in the functioning of real-world ecosystems. Front Ecol Environ 7:437–444

    Article  Google Scholar 

  • Eggleston DB, Grover JJ, Lipcius RN (1998) Ontogenetic diet shifts in Nassau grouper: trophic linkages and predatory impact. Bull Mar Sci 63:111–126

    Google Scholar 

  • Fondo EN, Martens EE (1998) Effects of mangrove deforestation on macrofaunal densities, Gazi Bay, Kenya. Mangroves and Saltmarshes 2:75–83

    Article  Google Scholar 

  • Forester DJ, Machlis GE (1996) Modeling human factors that affect the loss of biodiversity. Conserv Biol 10:1253–1263

    Article  Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140

    Article  Google Scholar 

  • Franks BR (2007) The spatial ecology and resource selection of juvenile lemon sharks (Negaprion brevirostris) in their primary nursery areas. Ph. D. Dissertation, Drexel University, 203 pp

  • Fucella JE, Dolan R (1996) Magnitude of subaerial beach disturbance during northeast storms. J Coast Res 12:420–429

    Google Scholar 

  • Gopal B, Chauhan M (2006) Biodiversity and its conservation in the Sundarban Mangrove Ecosystem. Aquat Sci 68:338–354

    Article  Google Scholar 

  • Granek EF, Frasier K (2007) The impacts of red mangrove (Rhizophora mangle) deforestation on zooplankton communities in Bocas del Toro, Panama. Bull Mar Sci 80:905–914

    Google Scholar 

  • Granek EF, Ruttenberg BI (2007) Protective capacity of mangroves during tropical storms: a case study from ‘Wilma’ and ‘Gamma’ in Belize. Mar Ecol Prog Ser 343:101–105

    Article  Google Scholar 

  • Gray JS (1997) Marine biodiversity: patterns, threats and conservation needs. Biodivers Conserv 6:153–175

    Article  Google Scholar 

  • Gruber SH, Parks W (2002) Mega-resort development on Bimini: sound economics or environmental disaster? Bahamas Journal of Science 9:2–18

    Google Scholar 

  • Gruber SH, Brown CA, Henningsen AD (1985) Age and growth of the lemon shark, Negaprion brevirostris (Poey), as determined by mark-recapture data and the examination of tetracycline labeled vertebral centra. Am Zool 25:A106–A106

    Google Scholar 

  • Gruber SH, Nelson DR, Morrissey JF (1988) Patterns of activity and space utilization of lemon sharks, Negaprion brevirostris, in a shallow Bahamian lagoon. Bull Mar Sci 43:61–76

    Google Scholar 

  • Guttridge TL, Gruber SH, Gledhill KS, Croft DP, Sims DW, Krause J (2009) Social preferences of juvenile lemon sharks, Negaprion brevirostris. Anim Behav 78:543–548

    Article  Google Scholar 

  • Halpern BS (2004) Are mangroves a limiting resource for two coral reef fishes? Mar Ecol Prog Ser 272:93–98

    Article  Google Scholar 

  • Halpern BS, Selkoe KA, Micheli F, Kappel CV (2007) Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv Biol 21:1301–1315

    Article  Google Scholar 

  • Hatcher BG, Johannes RE, Robertson AI (1989) Review of research relevant to the conservation of shallow tropical marine ecosystems. Oceanogr Mar Biol 27:337–414

    Google Scholar 

  • Hay WH, Wiedenmayer F, Ds M (1970) Modern organism communities of Bimini lagoon and their relation to the sediments. In: Supko P, Marszalek DS, Bock W (eds) Sedimentary environments and carbonate rocks of Bimini, Bahamas. Miami Geological Society, Miami, pp 19–30

    Google Scholar 

  • Heupel MR, Carlson JK, Simpfendorfer CA (2007) Shark nursery areas: concepts, definition, characterization and assumptions. Mar Ecol Prog Ser 337:287–297

    Article  Google Scholar 

  • Hilton GM, Murray T, Cleeves T, Hughes B, Williams EG (2000) Wetland birds in Turks and Caicos Islands II: wetland bird communities. Wildfowl 51:127–138

    Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Hughes AR, Stachowicz JJ (2004) Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proc Natl Acad Sci U S A 101:8998–9002

    Article  CAS  Google Scholar 

  • Hussey NE (2003) An evaluation of Landsat 7 ETM+ satellite imagery for quantitative biotope mapping of the Bimini Islands, the Bahamas including two known lemon shark (Negaprion brevirostris) nursery grounds. M. Sc. Thesis. University of Wales, Bangor, 167 pp

  • IUCN (2010) IUCN Red List of Threatened Species. Version 2010.4. http://www.iucnredlist.org. Cited 14 Nov 2010

  • Jaccard P (1912) The distribution of flora in the alpine zone. New Phytol 11:37–50

    Article  Google Scholar 

  • Jacobsen T (1987) An ecosystem-level study of a shallow Bahamian lagoon: biomass estimation of the lemon shark (Negaprion brevirostris), a top consumer species. Ph. D. Dissertation, University of Georgia, 240 pp

  • Jaffe BE, Smith RE, Foxgrover AC (2007) Anthropogenic influence on sedimentation and intertidal mudflat change in San Pablo Bay, California: 1856–1983. Estuar Coast Shelf Sci 73:175–187

    Article  Google Scholar 

  • Jelbart JE, Ross PM, Connolly RM (2007) Fish assemblages in seagrass beds are influenced by the proximity of mangrove forests. Mar Biol 150:993–1002

    Article  Google Scholar 

  • Jennings DE, Gruber SH, Franks BR, Kessel ST, Robertson AL (2008) Effects of large-scale anthropogenic development on juvenile lemon shark (Negaprion brevirostris) populations of Bimini, Bahamas. Environ Biol Fishes 83:369–377

    Article  Google Scholar 

  • Kirsteuer E (1969) On some species of Gnathostomulida from Bimini, Bahamas. American Museum Novitates 2356

  • Kornicker LS (1958) Ecology and taxonomy of recent marine ostracodes in the Bimini area, Great Bahama Bank. Publ Inst Mar Sci Univ Tex 5:194–300

    Google Scholar 

  • Kornicker LS (1959) Distribution of the ostracode suborder Cladopa, and a new species from the Bahamas. Micropaleontology 5:69–75

    Article  Google Scholar 

  • Kornicker LS (1963) Ecology and classification of Bahamian Cytherellidae (Ostracoda). Micropaleontology 9:61–70

    Article  Google Scholar 

  • Layman CA, Arrington DA, Langerhans RB, Silliman BR (2004) Degree of fragmentation affects fish assemblage structure in Andros Island (Bahamas) estuaries. Caribb J Sci 40:232–244

    Google Scholar 

  • Lerberg SB, Holland AF, Sanger DM (2000) Responses of tidal creek macrobenthic communities to the effects of watershed development. Estuaries 23:838–853

    Article  CAS  Google Scholar 

  • Long ZT, Bruno JF, Duffy JE (2007) Biodiversity mediates productivity through different mechanisms at adjacent trophic levels. Ecology 88:2821–2829

    Article  Google Scholar 

  • Lutz S, Broad K, Talaue-McManus L, Sanchirico JN, Stoffle RW (2002) Human dimensions of marine reserve policy—application to the Bimini Islands of the Bahamas. Bahamas Journal of Science 9:50–57

    Google Scholar 

  • Magurran AE (1998) Population differentiation without speciation. Philos Trans R Soc Lond B Biol Sci 353:275–286

    Article  Google Scholar 

  • Manson FJ, Loneragan NR, Skilleter GA, Phinn SR (2005) An evaluation of the evidence for linkages between mangroves and fisheries: a synthesis of the literature and identification of research directions. Oceanogr Mar Biol Annu Rev 43:483–513

    Google Scholar 

  • Mateo I, Tobias WJ (2007) A comparison of fish assemblages among five habitat types within a Caribbean lagoonal system. Gulf Caribb Res 19:21–31

    Google Scholar 

  • Meynecke JO, Lee SY, Duke NC (2008) Linking spatial metrics and fish catch reveals the importance of coastal wetland connectivity to inshore fisheries in Queensland, Australia. Biol Conserv 141:981–996

    Article  Google Scholar 

  • Mumby PJ et al (2004) Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427:533–536

    Article  CAS  Google Scholar 

  • Nagelkerken I, van der Velde G, Gorissen MW, Meijer GJ, van’t Hof T, den Hartog C (2000) Importance of mangroves, seagrass beds and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Estuar Coast Shelf Sci 51:31–44

    Article  Google Scholar 

  • Nagelkerken I et al (2002) How important are mangroves and seagrass beds for coral-reef fish? The nursery hypothesis tested on an island scale. Mar Ecol Prog Ser 244:299–305

    Article  Google Scholar 

  • Nagelkerken I et al (2008) The habitat function of mangroves for terrestrial and marine fauna: a review. Aquat Bot 89:155–185

    Article  Google Scholar 

  • Newell ND, Imbrie J, Purdy EG, Thurber DL (1959) Organism communities and bottom facies, Great Bahama Bank. Bull Am Mus Nat Hist 117:183–228

    Google Scholar 

  • Newman SP (2003) Spatial and temporal variation in diet and prey preference of nursery-bound juvenile lemon sharks (Negaprion brevirostris) at Bimini. Ph. D. Dissertation. University of Plymouth, 268 pp

  • Orth RJ et al (2006) A global crisis for seagrass ecosystems. Bioscience 56:987–996

    Article  Google Scholar 

  • Parsons DM, Eggleston DB (2006) Human and natural predators combine to alter behavior and reduce survival of Caribbean spiny lobster. J Exp Mar Biol Ecol 334:196–205

    Article  Google Scholar 

  • Pearse AS (1950) Notes on the inhabitants of certain sponges at Bimini. Ecology 31:149–151

    Article  Google Scholar 

  • Primavera JH (1991) Intensive prawn farming in the Philippines: ecological, social, and economic implications. Ambio 20:28–33

    Google Scholar 

  • Renaud JC (1956) A report on some polychaetous annelids from the Miami-Bimini area. American Museum Novitates 1812

  • Risser PG (1995) Biodiversity and ecosystem function. Conserv Biol 9:742–746

    Article  Google Scholar 

  • Robertson AI, Blaber SJM (1992) Plankton, epibenthos, and fish communities. In: Alongi DM, Robertson AI (eds) Tropical mangrove ecosystems. American Geophysical Union, Washington

    Chapter  Google Scholar 

  • Schapira D, Montano IA, Antczak A, Posada JM (2009) Using shell middens to assess effects of fishing on queen conch (Strombus gigas) populations in Los Roques Archipelago National Park, Venezuela. Mar Biol (Berlin) 156:787–795

    Article  Google Scholar 

  • Schweizer D, Posada JM (2006) Distribution, density, and abundance of the queen conch, Strombus gigas, in Los Roques Archipelago National Park, Venezuela. Bull Mar Sci 79:243–257

    Google Scholar 

  • Serafy JE, Faunce CH, Lorenz JJ (2003) Mangrove shoreline fishes of Biscayne Bay, Florida. Bull Mar Sci 72:161–180

    Google Scholar 

  • Shinnaka T, Sano M, Ikejima K, Tongnunui P, Horinouchi M, Kurokura H (2007) Effects of mangrove deforestation on fish assemblage at Pak Phanang Bay, southern Thailand. Fish Sci 73:862–870

    Article  CAS  Google Scholar 

  • Smith CL, Tyler JC, Feinberg MN (1981) Population ecology and biology of the pearlfish (Carapus bermudensis) in the lagoon at Bimini, Bahamas. Bull Mar Sci 31:876–902

    Google Scholar 

  • Sorensen T (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species content. Kongelige Danske Videnskabernes Selskab 5:1–34

    Google Scholar 

  • Squires DF (1958) Stony corals from the vicinity of Bimini, Bahamas, British West Indies. Bull Am Mus Nat Hist 115:215–262

    Google Scholar 

  • Stafford-Deitsch J (1996) Mangrove—the forgotten habitat. Immel Publishing, London

    Google Scholar 

  • Stoner AW (2003) What constitutes essential nursery habitat for a marine species? A case study of habitat form and function for queen conch. Mar Ecol Prog Ser 257:275–289

    Article  Google Scholar 

  • Sundstrom LF et al (2001) Review of elasmobranch behavioral studies using ultrasonic telemetry with special reference to the lemon shark, Negaprion brevirostris, around Bimini Islands, Bahamas. Environ Biol Fishes 60:225–250

    Article  Google Scholar 

  • Vilardy S, Polania J (2002) Mollusc fauna of the mangrove root-fouling community at the Colombian Archipelago of San Andres and Old Providence. Wetlands Ecology and Management 10:273–282

    Article  Google Scholar 

  • Voss GL, Voss NA (1960) An ecological survey of the marine invertebrates of Bimini, Bahamas, with a consideration of their zoogeographical relationships. Bull Mar Sci Gulf Caribb 10:96–116

    Google Scholar 

  • Waycott M et al (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci U S A 106:12377–12381

    Article  CAS  Google Scholar 

  • White AM (2002) Checklist of Bimini birds. Bahamas Journal of Science 9:63–67

    Google Scholar 

  • Wiedenmayer F (1977) Description of the Habitats and Communities of Bimini: Shallow Water Sponges of the Western Bahamas. Birkhauser Verlog, Basel

    Google Scholar 

  • Williamson I, King C, Mather PB (1994) A comparison of fish communities in unmodified and modified inshore habitats of Raby Bay, Queensland. Estuar Coast Shelf Sci 39:401–411

    Article  Google Scholar 

  • Worm B et al (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314:787–790

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank all of the volunteers and staff at the Bimini Biological Field Station who collected field data presented in this manuscript, and also A. Grant for assisting with historical data collection. We are grateful to C. Higgs and M. Braynen, Directors of the Bahamas Department of Fisheries, for issuing a scientific permit in support of our research. The study was made possible with financial support from the Bimini Biological Field Station, Earthwatch Institute, National Science Foundation (NSF-OCE 97–12793), PADI Project Aware, Florida Department of Education (FLORIDA 8749703000001), L. Hoover, the Hoover Foundation, and T. and T. Fujino for generous personal support. We gratefully acknowledge the following corporate support: M. Aiello, President of Davey Marine; the late D. Schaad of Mercury Division, Brunswick Corporation; W. Bell, President Sundance Boats; Destron-Fearing Corporation, especially S. Casey; P. Ramsay, Bimini Island Air; and Pelican Products. We also thank D. Green and two anonymous reviewers for improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Jennings.

Appendices

Appendix I

Table 3 SGD 3: High density Thalassia testudinum on sand with high silt fraction of variable depth, forming randomly dispersed mounds, overlying Pleistocene pavement in shallow subtidal to intertidal sheltered location
Table 4 SGD 2: Mid density Thalassia testudinum on sand with high silt fraction of <1 m depth, forming randomly dispersed mounds, overlying Pleistocene pavement in shallow subtidal sheltered location
Table 5 SGD 1: Low density Thalassia testudinum on sand with high silt fraction of variable depth, forming possible mounds and dips, overlying Pleistocene pavement in shallow subtidal sheltered location
Table 6 SGD 1: Low density Halodule wrightii on fecal pellet sediment of <1 m depth, forming randomly dispersed mounds, overlying Pleistocene pavement in shallow subtidal sheltered location
Table 7 SPSGD 1: Patchy low density of Thalassia testudinum and Halodule wrightii on sand with high silt fraction of <1 m depth overlying Pleistocene pavement in shallow subtidal sheltered location
Table 8 EPSGD 1: Patchy low density of Thalassia testudinum and Halodule wrightii on sand with high silt fraction of <1 m depth, forming randomly dispersed mounds, overlying Pleistocene pavement in shallow subtidal slightly exposed location
Table 9 BS: Barren fecal pellet sediment of >1 m depth overlying Pleistocene pavement in shallow subtidal to intertidal unexposed location
Table 10 MAL MSS: Laurencia obtusa dominated and low density Thalassia testudinum and Halodule wrightii on sand with high silt fraction of <1 m depth overlying Pleistocene pavement which can be exposed. Located in shallow subtidal to intertidal sheltered position

Appendix II

Table 11

Table 11 A list of taxa recorded from the North Sound

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jennings, D.E., DiBattista, J.D., Stump, K.L. et al. Assessment of the aquatic biodiversity of a threatened coastal lagoon at Bimini, Bahamas. J Coast Conserv 16, 405–428 (2012). https://doi.org/10.1007/s11852-012-0211-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11852-012-0211-6

Keywords

Navigation