Skip to main content
Log in

Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD)

  • Published:
JOM Aims and scope Submit manuscript

Abstract

High-throughput density functional theory (HT DFT) is fast becoming a powerful tool for accelerating materials design and discovery by the amassing tens and even hundreds of thousands of DFT calculations in large databases. Complex materials problems can be approached much more efficiently and broadly through the sheer quantity of structures and chemistries available in such databases. Our HT DFT database, the Open Quantum Materials Database (OQMD), contains over 200,000 DFT calculated crystal structures and will be freely available for public use at http://oqmd.org. In this review, we describe the OQMD and its use in five materials problems, spanning a wide range of applications and materials types: (I) Li-air battery combination catalyst/electrodes, (II) Li-ion battery anodes, (III) Li-ion battery cathode coatings reactive with HF, (IV) Mg-alloy long-period stacking ordered (LPSO) strengthening precipitates, and (V) training a machine learning model to predict new stable ternary compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. National Science and Technology Council, Materials Genome Initiative for Global Competitiveness, Tech. Rep. (June 2011).

  2. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  MathSciNet  Google Scholar 

  3. W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  MathSciNet  Google Scholar 

  4. J. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  Google Scholar 

  5. J. Ihm, A. Zunger, and M.L. Cohen, J. Phys. C Solid State 12, 4409 (1979).

    Article  Google Scholar 

  6. D. Ceperley and B. Alder, Phys. Rev. Lett. 45, 566 (1980).

    Article  Google Scholar 

  7. J. Ihm, M. Yin, and M.L. Cohen, Solid State Commun. 37, 491 (1981).

    Article  Google Scholar 

  8. J. Hafner, C. Wolverton, and G. Ceder, MRS Bull. 31, 659 (2006).

    Article  Google Scholar 

  9. S. Curtarolo, G.L.W. Hart, M.B. Nardelli, N. Mingo, S. Sanvito, and O. Levy, Nat. Mater. 12, 191 (2013).

    Article  Google Scholar 

  10. J. Saal, S. Kirklin, B. Meredig, A. Thompson, J. Doak, and C. Wolverton, unpublished research (2013).

  11. A. Jain, G. Hautier, C.J. Moore, S. Ping Ong, C.C. Fischer, T. Mueller, K.A. Persson, and G. Ceder, Comput. Mater. Sci. 50, 2295 (2011).

    Article  Google Scholar 

  12. D.D. Landis, J.S. Hummelshoj, S. Nestorov, J. Greeley, M. Dulak, T. Bli-gaard, J.K. Norskov, and K.W. Jacobsen, Comput. Sci. Eng. 14, 51 (2012).

    Article  Google Scholar 

  13. S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R.H. Taylor, L.J. Nelson, G.L. Hart, S. Sanvito, M. Buongiorno-Nardelli, N. Mingo, and O. Levy, Comput. Mater. Sci. 58, 227 (2012).

    Article  Google Scholar 

  14. G. Bergerhoff, R. Hundt, R. Sievers, and I.D. Brown, J. Chem. Inf. Model. 23, 66 (1983).

    Article  Google Scholar 

  15. A. Belsky, M. Hellenbrandt, V.L. Karen, and P. Luksch, Acta Crystallogr. B 58, 364 (2002).

    Article  Google Scholar 

  16. G. Jóhannesson, T. Bligaard, A. Ruban, H. Skriver, K. Jacobsen, and J. Norskov, Phys. Rev. Lett. 88, 1 (2002).

    Article  Google Scholar 

  17. T. Bligaard, G.H. Johannesson, A.V. Ruban, H.L. Skriver, K.W. Jacobsen, and J.K. Nørskov, Appl. Phys. Lett. 83, 4527 (2003).

    Article  Google Scholar 

  18. M. Andersson, T. Bligaard, A. Kustov, K. Larsen, J. Greeley, T. Johannessen, C. Christensen, and J. Nørskov, J. Catal. 239, 501 (2006).

    Article  Google Scholar 

  19. J. Greeley, T.F. Jaramillo, J. Bonde, I.B. Chorkendorff, and J.K. Norskov, Nat. Mater. 5, 909 (2006).

    Article  Google Scholar 

  20. A. Jain, S.-A. Seyed-Reihani, C.C. Fischer, D.J. Couling, G. Ceder, and W.H. Green, Chem. Eng. Sci. 65, 3025 (2010).

    Article  Google Scholar 

  21. G. Hautier, A. Jain, S.P. Ong, B. Kang, C. Moore, R. Doe, and G. Ceder, Chem. Mater. 23, 3495 (2011).

    Article  Google Scholar 

  22. S. Wang, Z. Wang, W. Setyawan, N. Mingo, and S. Curtarolo, Phys. Rev. X 1, 021012 (2011).

    Article  Google Scholar 

  23. K. Yang, W. Setyawan, S. Wang, M. Buongiorno Nardelli, and S. Curtarolo, Nat. Mater. 11, 614 (2012).

    Article  Google Scholar 

  24. L. Yu and A. Zunger, Phys. Rev. Lett. 108, 068701 (2012).

    Article  Google Scholar 

  25. X. Zhang, L. Yu, A. Zakutayev, and A. Zunger, Adv. Funct. Mater. 22, 1425 (2012).

    Article  Google Scholar 

  26. S. Kirklin and C. Wolverton, unpublished research (2013).

  27. S. Kirklin, B. Meredig, and C. Wolverton, Adv. Energy Mater. 3, 252 (2013).

    Article  Google Scholar 

  28. M. Aykol, S. Kirklin, and C. Wolverton, unpublished research (2013).

  29. J. Saal and C. Wolverton, unpublished research (2013).

  30. B. Meredig, A. Agrawal, S. Kirklin, J.E. Saal, J.W. Doak, A. Thompson, K. Zhang, A. Choudhary, and C. Wolverton, unpublished research (2013).

  31. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  32. G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  33. J. Saal and C. Wolverton, Acta Mater. 61, 2330 (2013).

    Article  Google Scholar 

  34. Y. Zhang, E. Majzoub, V. Ozoliņš, and C. Wolverton, J. Phys. Chem. C 116, 10522 (2012).

    Article  Google Scholar 

  35. Y. Zhang, E. Majzoub, V. Ozoliņš, and C. Wolverton, Phys. Rev. B 82, 174107 (2010).

    Article  Google Scholar 

  36. J.W. Doak and C. Wolverton, Phys. Rev. B 86, 144202 (2012).

    Article  Google Scholar 

  37. A. Akbarzadeh, V. Ozolins, and C. Wolverton, Adv. Mater. 19, 3233 (2007).

    Article  Google Scholar 

  38. C. Wolverton and V. Ozolins, Phys. Rev. B 75, 1 (2007).

    Article  Google Scholar 

  39. S. Kirklin and C. Wolverton, unpublished research.

  40. SGTE, Thermodynamic Properties of Inorganic Materials, vol. 19 (Berlin, Germany: Springer-Verlag, 1999).

  41. Y. Meng and M.A.D. Dompablo, Energy Environ. Sci. 2, 589 (2009).

    Article  Google Scholar 

  42. G. Ceder, MRS Bull. 35, 693 (2010).

    Article  Google Scholar 

  43. M.D. Fleischauer, J.M. Topple, and J.R. Dahn, Electrochem. Solid State 8, A137 (2005).

    Article  Google Scholar 

  44. H. Lee, Y. Kim, M. Hong, and S. Lee, J. Power Sources 141, 159 (2005).

    Article  Google Scholar 

  45. C.-M. Hwang and J.-W. Park, Surf. Coat. Technol. 205, S439 (2010).

    Article  Google Scholar 

  46. Z. Wang, W. Tian, X. Liu, Y. Li, and X. Li, Mater. Chem. Phys. 100, 92 (2006).

    Article  Google Scholar 

  47. A.D.W. Todd, R.E. Mar, and J.R. Dahn, J. Electrochem. Soc. 154, A597 (2007).

    Article  Google Scholar 

  48. M. Xue and Z. Fu, Solid State Ionics 177, 1501 (2006).

    Article  Google Scholar 

  49. P. Ferguson and M. Martine, J. Power Sources 194, 794 (2009).

    Article  Google Scholar 

  50. X. Wang and W. Han, ACS Appl. Mater. Int. 2, 1548 (2010).

    Article  Google Scholar 

  51. J. Xiang, X. Wang, X. Xia, J. Zhong, and J. Tu, J. Alloy. Compd. 509, 157 (2011).

    Article  Google Scholar 

  52. D. Souza, V. Pralong, A. Jacobson, and L. Nazar, Science 296, 2012 (2002).

    Article  Google Scholar 

  53. V. Pralong, Electrochem. Commun. 4, 516 (2002).

    Article  Google Scholar 

  54. J.L. Tirado, J.C. Jumas, L. Monconduit, and J. Olivier-Fourcade, J. Power Sources 109, 308 (2002).

    Article  Google Scholar 

  55. S. Boyanov, F. Gillot, and L. Monconduit, Ionics 14, 125 (2008).

    Article  Google Scholar 

  56. L.Y. Beaulieu, K.W. Eberman, R.L. Turner, L.J. Krause, and J.R. Dahn, Electrochem. Solid State 4, A137 (2001).

    Article  Google Scholar 

  57. J. Wolfenstine, J.L. Allen, J. Read, and D. Foster, Tech. Rep. June (2006).

  58. C.S. Johnson, S.-H. Kang, J.T. Vaughey, S.V. Pol, M. Balasubramanian, and M.M. Thackeray, Chem. Mater. 22, 1263 (2010).

    Article  Google Scholar 

  59. L. Trahey, C. Johnson, and J. Vaughey, Electrochem. Solid State 14, A64 (2011).

    Article  Google Scholar 

  60. C. Wolverton, D.J. Siegel, A.R. Akbarzadeh, V. Ozoliņš, J. Phys.-Condens. Mater. 20, 064228 (2008).

    Google Scholar 

  61. E. Littauer, W. Momyer, and K. Tsai, J. Power Sources 2, 163 (1977).

    Article  Google Scholar 

  62. M. Urquidi-Macdonald, J. Flores, D. Macdonald, O. Pensado-Rodriguez, and D. Vanvoorhis, Electrochim. Acta 43, 3069 (1998).

    Article  Google Scholar 

  63. K. Takechi, T. Shiga, and T. Asaoka, Chem. Commun. 47, 3463 (2011).

    Article  Google Scholar 

  64. Z. Chen, Y. Qin, K. Amine, and Y.-K. Sun, J. Mater. Chem. 20, 7606 (2010).

    Article  Google Scholar 

  65. K. Edstrom, T. Gustafsson, and J. Thomas, Electrochim. Acta 50, 397 (2004).

    Article  Google Scholar 

  66. Y.J. Kim, J. Cho, T.-J. Kim, and B. Park, J. Electrochem. Soc. 150, A1723 (2003).

    Article  Google Scholar 

  67. J. Cho, Y.J. Kim, and B. Park, Chem. Mater. 4, 3788 (2000).

    Article  Google Scholar 

  68. D. Aurbach, B. Markovsky, A. Rodkin, and E. Levi, Electrochim. Acta 47, 4291 (2002).

    Article  Google Scholar 

  69. N.V. Landschoot, E. Kelder, P. Kooyman, C. Kwakernaak, and J. Schoonman, J. Power Sources 138, 262 (2004).

    Article  Google Scholar 

  70. J. Cabana, L. Monconduit, D. Larcher, and M.R. Palacín, Adv. Mater. 22, E170 (2010).

    Article  Google Scholar 

  71. F. Wang, J. Am. Chem. Soc. 133, 18828 (2011).

    Article  Google Scholar 

  72. J. Cho, T.-G. Kim, C. Kim, J.-G. Lee, Y.-W. Kim, and B. Park, J. Power Sources 146, 58 (2005).

    Article  Google Scholar 

  73. H. Zhao, L. Gao, W. Qiu, and X. Zhang, J. Power Sources 132, 195 (2004).

    Article  Google Scholar 

  74. C. Li, H. Zhang, L. Fu, H. Liu, Y. Wu, E. Rahm, R. Holze, and H. Wu, Electrochim. Acta 51, 3872 (2006).

    Article  Google Scholar 

  75. J.-F. Nie, Metall. Mater. Trans. A 43, 3891 (2012).

    Article  Google Scholar 

  76. Y. Kawamura, K. Hayashi, A. Inoue, and T. Masumoto, Metall. Mater. Trans. 42, 1172 (2001).

    Google Scholar 

  77. K. Amiya, T. Ohsuna, and A. Inoue, Mater. Trans. 44, 2151 (2003).

    Article  Google Scholar 

  78. M. Yamasaki, T. Anan, S. Yoshimoto, and Y. Kawamura, Scripta Mater. 53, 799 (2005).

    Article  Google Scholar 

  79. Y. Kawamura, T. Kasahara, S. Izumi, and M. Yamasaki, Scripta Mater. 55, 453 (2006).

    Article  Google Scholar 

  80. K. Yamada, Y. Okubo, M. Shiono, and H. Watanabe, Mater. Trans. 47, 1066 (2006).

    Article  Google Scholar 

  81. Y. Kawamur and M. Yamasaki, Metall. Mater. Trans. 48, 2986 (2007).

    Google Scholar 

  82. T. Itoi, K. Takahashi, H. Moriyama, and M. Hirohashi, Scripta Mater. 59, 1155 (2008).

    Article  Google Scholar 

  83. J. Nie, K. Ohishi, X. Gao, and K. Hono, Acta Mater. 56, 6061 (2008).

    Article  Google Scholar 

  84. H. Yokobayashi, K. Kishida, H. Inui, M. Yamasaki, and Y. Kawamura, Acta Mater. 59, 7287 (2011).

    Article  Google Scholar 

  85. S.-B. Mi and Q–.Q. Jin, Scripta Mater. 68, 635 (2013).

    Article  Google Scholar 

  86. Q.-Q. Jin, C.-F. Fang, and S.-B. Mi, J. Alloy Compd. 7 (2013).

  87. Z. Leng, J. Zhang, T. Yin, L. Zhang, S. Liu, M. Zhang, and R. Wu, Mater. Sci. Eng.: A 580, 196 (2013).

  88. Y. Zhu, A. Morton, and J. Nie, Acta Mater. 58, 2936 (2010).

    Article  Google Scholar 

  89. D. Egusa and E. Abe, Acta Mater. 60, 166 (2012).

    Article  Google Scholar 

  90. T. Itoi, T. Seimiya, Y. Kawamura, and M. Hirohashi, Scripta Mater. 51, 107 (2004).

    Article  Google Scholar 

  91. D. Egusa and E. Abe (Paper presented at LPSO Conference, Sapporo, Japan, 2 October 2012).

  92. H. Somekawa and T. Mukai, Mater. Sci. Eng.: A 459, 366 (2007).

    Google Scholar 

  93. Y.-N. Zhang, D. Kevorkov, J. Li, E. Essadiqi, and M. Medraj, Intermetallics 18, 2404 (2010).

    Article  Google Scholar 

  94. K. Oh-ishi, R. Watanabe, C. Mendis, and K. Hono, Mater. Sci. Eng.: A 526, 177 (2009).

    Google Scholar 

  95. T. Zhou, M. Yang, Z. Zhou, J. Hu, and Z. Chen, J. Alloy. Compd. 560, 161 (2013).

    Article  Google Scholar 

  96. G. Trimarchi and A. Zunger, Phys. Rev. B 75, 104113 (2007).

    Article  Google Scholar 

  97. C.C. Fischer, K.J. Tibbetts, D. Morgan, and G. Ceder, Nat. Mater. 5, 641 (2006).

    Article  Google Scholar 

  98. C.W. Glass, A.R. Oganov, and N. Hansen, Comput. Phys. Commun. 175, 713 (2006).

    Article  MATH  Google Scholar 

  99. Y.M. Muggianu, M. Gambino, and J.P. Bros, J. Chim. Phys. 72, 83 (1975).

    Google Scholar 

  100. M. Hillert, Phase Equilibria, Phase Diagrams and Phase Transformations (Cambridge, U.K.: Cambridge University Press, 1998).

    Google Scholar 

  101. J.J. Rodríguez, L.I. Kuncheva, and C.J. Alonso, IEEE Trans. Pattern Anal. Mach. Intell. 28, 1619 (2006).

    Article  Google Scholar 

  102. G. Hautier, C.C. Fischer, A. Jain, T. Mueller, and G. Ceder, Chem. Mater. 22, 3762 (2010).

    Article  Google Scholar 

  103. S. Curtarolo, D. Morgan, K. Persson, J. Rodgers, and G. Ceder, Phys. Rev. Lett. 91, 135503 (2003).

    Article  Google Scholar 

  104. M. Shishkin and G. Kresse, Phys. Rev. B 75, 235102 (2007).

    Article  Google Scholar 

  105. J. Harl and G. Kresse, Phys. Rev. Lett. 103, 056401 (2009).

    Article  Google Scholar 

  106. W. Foulkes, L. Mitas, R. Needs, and G. Rajagopal, Rev. Mod. Phys. 73, 33 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge funding support from the following sources: the Center for Electrical Energy Storage: Tailored Interfaces, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (to S. K.); The Dow Chemical Company (to M. A.); the Ford-Boeing-Northwestern Alliance for the LPSO study and U.S. Department of Energy, Office of Basic Energy Sciences through grant DE-FG02-98ER45721 for work on the OQMD (to J. E. S.); and the Department of Defense through the National Defense Science & Engineering Graduate Fellowship Program with further support by DOE under Grant No. DE-FG02-07ER46433 (to B. M. and C. W.). Calculations were performed on the Northwestern University high-performance computing system Quest, as well as on resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Wolverton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saal, J.E., Kirklin, S., Aykol, M. et al. Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD). JOM 65, 1501–1509 (2013). https://doi.org/10.1007/s11837-013-0755-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0755-4

Keywords

Navigation