Skip to main content
Log in

Disrupting Buchnera aphidicola, the endosymbiotic bacteria of Myzus persicae, delays host plant acceptance

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Myzus persicae Sulzer, like almost all aphids, associates with the endosymbiotic bacterium, Buchnera aphidicola. Although the accepted function of B. aphidicola is to complete the aphid diet with nutrients such as essential amino acids and vitamins, there is evidence that the bacteria may participate in the plant–insect interaction. Moreover, bacterial proteins with potential effector action on the metabolism of the host plant have been identified in the saliva of M. persicae. However, the possible involvement of B. aphidicola in relation to host plant acceptance by aphids needs further investigation. The aim of this study was to evaluate the effect that the disruption of the B. aphidicolaM. persicae symbiosis has on aphid feeding behaviour and on the expression of aphid salivary genes. The antibiotic rifampicin was administrated to adult aphids through artificial diets to disrupt the bacterial primary endosymbionts. Comparisons were made with control aphids, feeding from diet without rifampicin, as well as normal aphids fed on radish plants. Differences were found in the feeding behaviour of aposymbiotic aphids, which had delayed host acceptance and problems during stylet penetration into host plants. It was also found that B. aphidicola disruption down-regulated the expression of the Mp63 salivary protein gene. Together, these results indicate that B. aphidicola plays a role in plant–aphid interactions. The validity of the use of artificial diets in plant–aphid studies is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvarez AE, Broglia VG, Alberti D´Amato AM, Wouters D, Van der Vossen E, Garzo E, Tjallingii WF, Dicke M, Vosman B (2013) Comparative analysis of Solanum stoloniferum responses to probing by the green peach aphid, Myzus persicae and the potato aphid Macrosiphum euphorbiae. Insect Sci 20(2):207–227

    Article  CAS  PubMed  Google Scholar 

  • Bonaventure G (2012) Perception of insect feeding by plants. Plant Biol 14(6):872–880. doi:10.1111/j.1438-8677.2012.00650.x

    Article  CAS  PubMed  Google Scholar 

  • Bos JIB, Prince D, Pitino M, Maffei ME, Win J, Hogenhout SA (2010) A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae (green peach aphid). PLoS Genet 6(11):e1001216

    Article  PubMed Central  PubMed  Google Scholar 

  • Buchner P (1965) Endosymbioses of animals with plant microorganisms. Wiley, Chichester

    Google Scholar 

  • Carolan JC, Fitzroy CIJ, Ashton PD, Douglas AE, Wilkinson TL (2009) The secreted salivary proteome of the pea aphid Acyrthosiphon pisum characterised by mass spectrometry. Proteomics 9:2457–2467

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary R, Atamian HS, Shen Z, Briggs SP, Kaloshian, I (2014) GroEL from the endosymbiont Buchnera aphidicola betrays the aphid by triggering plant defense. Proc Natl Acad Sci 111(24):8919–8924. doi:10.1073/pnas.1407687111

  • Cherqui AA, Tjallingii WF (2000) Salivary proteins of aphids, a pilot study on identification, separation and immune localization. J Insect Physiol 46(8):1177–1186

    Article  CAS  PubMed  Google Scholar 

  • Cooper WR, Dillwith JW, Puterka GJ (2010) Salivary proteins of Russian wheat aphid (Hemiptera: Aphididae). Environ Entomol 39:223–231

    Article  CAS  PubMed  Google Scholar 

  • Cooper WR, Dillwith JW, Puterka GJ (2011) Comparisons of salivary proteins from five aphid (Hemiptera: Aphididae) species. Environ Entomol 40(1):151–156

    Article  CAS  PubMed  Google Scholar 

  • De Vos M, Jander G (2009) Myzus persicae (green peach aphid) salivary components induce defence responses in Arabidopsis thaliana. Plant, Cell Environ 32:1548–1560

    Article  Google Scholar 

  • Di-Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2011) InfoStat versión 2011. Grupo InfoStat. FCA. Cordoba, Argentina, http://www.infostat.com.ar

  • Douglas AE (1993) The nutritional quality of phloem sap utilized by natural aphid populations. Ecol Entomol 18(1):31–38

    Article  Google Scholar 

  • Douglas AE (1996) Reproductive failure and the free amino acid pools in pea aphid (Acyrthosiphon pisum) lacking symbiotic bacteria. J Insect Physiol 42(3):247–255

    Article  CAS  Google Scholar 

  • Douglas AE (1998) Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol 43:17–37

    Article  CAS  PubMed  Google Scholar 

  • Douglas AE, Minto LB, Wilkinson TL (2001) Quantifying nutrient productions by the microbial symbionts in an aphid. J Exp Biol 204:349–358

    CAS  PubMed  Google Scholar 

  • Elzinga DA, Jander G (2013) The role of protein effectors in plant-aphid interactions. Curr Opin Plant Biol 16(4):451–456. doi:10.1016/j.pbi.2013.06.018

    Article  CAS  PubMed  Google Scholar 

  • Elzinga DA, De Vos M, Jander G (2014) Suppression of plant defenses by a Myzus persicae (green peach aphid) salivary effector protein. Mol Plant Microbe Interact 27(7):747–756. doi:10.1094/MPMI-01-14-0018-R

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frago E, Dicke M, Godfray HCJ (2012) Insect symbionts as hidden players in insect-plant interactions. Trends Ecol Evol 27(12):705–711. doi:10.1016/j.tree.2012.08.013

    Article  PubMed  Google Scholar 

  • Francis F, Gerkens P, Harmel N, Mazzucchelli G, De Pauw E, Haubruge E (2006) Proteomics in Myzus persicae: effect of aphid host plant switch. Insect Biochem Mol Biol 36(3):219–227

    Article  CAS  PubMed  Google Scholar 

  • Francis F, Guillonneau F, Leprince P, De Pauw E, Haubruge E, Jia L, Goggin FL (2010) Tritrophic interactions among Macrosiphum euphorbiae aphids, their host plants and endosymbionts: investigation by a proteomic approach. J Insect Physiol 56(6):575–585

    Article  CAS  PubMed  Google Scholar 

  • Halarewicz A, Gabrys B (2012) Probing behavior of bird cherry-oat aphid Rhopalosiphum padi (L.) on native bird cherry Prunus padus L. and alien invasive black cherry Prunus serotina Erhr. in Europe and the role of cyanogenic glycosides. Arthropod-Plant Interact 6(4):497–505. doi:10.1007/s11829-012-9228-x

    Article  Google Scholar 

  • Harmel N, Letocart E, Cherqui A, Giordanengo P, Mazzucchelli G, Guillonneau F, De Pauw E, Haubruge E, Francis F (2008) Identification of aphid salivary proteins: a proteomic investigation of Myzus persicae. Insect Mol Biol 17(2):165–174

    Article  CAS  PubMed  Google Scholar 

  • Kimmins FM, Tjallingii WF (1985) Ultrastructure of sieve element penetration by aphid stylets during electrical recording. Entomol Exp Appl 39:135–143

    Article  Google Scholar 

  • Koga R, Tsuchida T, Fukatsu T (2003) Changing partners in an obligate symbiosis: a facultative endosymbiont can compensate for loss of the essential endosymbiont Buchnera in an aphid 270. doi:10.1098/rspb.2003.2537

  • Koga R, Tsuchida T, Sakurai M, Fukatsu T (2007) Selective elimination of aphid endosymbionts: effects of antibiotic dose and host genotype, and fitness consequences. FEMS Microbiol Ecol 60(2):229–239. doi:10.1111/j.1574-6941.2007.00284.x

    Article  CAS  PubMed  Google Scholar 

  • Legeai F, Shigenobu S, Gauthier JP, Colbourne J, Rispe C, Collin O, Richards S, Wilson ACC, Murphy T, Tagu D (2010) AphidBase: a centralized bioinformatic resource for annotation of the pea aphid genome. Insect Mol Biol 19:5–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McLean DL, Kinsey MG (1964) A technique for electronically recording aphid feeding and salivation. Nature 202:1358–1359

    Article  Google Scholar 

  • Miles PW (1999) Aphid saliva. Biol Rev Camb Philos Soc 74(1):41–85

    Article  Google Scholar 

  • Moran NA, Degnan PH (2006) Functional genomics of Buchnera and the ecology of aphid hosts. Mol Ecol 15(5):1251–1261. doi:10.1111/j.1365-294X.2005.02744.x

    Article  CAS  PubMed  Google Scholar 

  • Moran NA, Munson MA, Baumann P, Ishikawa H (1993) A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc R Soc Lond B 253:167–171

  • Munson MA, Baumann P, Kinsey MG (1991) Buchnera gen. nov. and Buchnera aphidicola sp. nov., a taxon consisting of the mycetocyte-associated primary endosymbionts of aphids. Int J Syst Bacteriol 41:566–568

    Article  Google Scholar 

  • Mutti NS, Louis J, Pappan LK, Pappan K, Begum K, Chen M-S, Park Y, Dittmer N, Marshall J, Reese JC, Reeck GR (2008) A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant. Proc Natl Acad Sci 105(29):9965–9969

  • Nicholson SJ, Hartson SD, Puterka GJ (2012) Proteomic analysis of secreted saliva from Russian wheat aphid (Diuraphis noxia Kurd.) biotypes that differ in virulence to wheat. J Proteom 75(7):2252–2268

    Article  CAS  Google Scholar 

  • Nikoh N, McCutcheon JP, Kudo T, Miyagishima S, Moran N, Nakabachi A (2010) Bacterial genes in the aphid genome: absence of functional gene transfer from Buchnera to its host. PLoS Genet 6(2):e1000827. doi:10.1371/journal.pgen.1000827

    Article  PubMed Central  PubMed  Google Scholar 

  • Nováková E, Hypša V, Klein J, Foottit RG, von Dohlen CD, Moran NA (2013) Reconstructing the phylogeny of aphids (Hemiptera: Aphididae) using DNA of the obligate symbiont Buchnera aphidicola. Mol Phylogenet Evol 68(1):42–54

    Article  PubMed  Google Scholar 

  • Pitino M, Hogenhout SA (2013) Aphid protein effectors promote aphid colonization in a plant species-specific manner. Mol Plant-Microbe Interact 26(1):130–139. doi:10.1094/mpmi-07-12-0172-fi

    Article  CAS  PubMed  Google Scholar 

  • Pitino M, Coleman AD, Maffei ME, Ridout CJ, Hogenhout SA (2011) Silencing of aphid genes by dsRNA feeding from plants. PLoS ONE 6(10):e25709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prado E, Tjallingii WF (1994) Aphid activities during sieve element punctures. Entomol Exp Appl 72:157–165

    Article  Google Scholar 

  • Prosser WA, Douglas AE (1991) The aposymbiotic aphid: an analysis of chlortetracycline-treated pea aphid, Acyrthosiphon pisum. J Insect Physiol 37(10):713–719

    Article  CAS  Google Scholar 

  • Prosser WA, Douglas AE (1992) A test of the hypothesis that nitrogen is upgraded and recycled in an aphid (Acyrtosiphon pisum) symbiosis. J Insect Physiol 38(2):93–99

    Article  CAS  Google Scholar 

  • Ramsey J, Wilson A, de Vos M, Sun Q, Tamborindeguy C, Winfield A, Malloch G, Smith D, Fenton B, Gray S, Jander G (2007) Genomic resources for Myzus persicae: EST sequencing, SNP identification, and microarray design. BMC Genom 8:423

    Article  Google Scholar 

  • Rao SAK, Carolan JC, Wilkinson TL (2013) Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins. PLoS ONE 8(2):e57413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sarria E, Cid M, Garzo E, Fereres A (2009) Excel Workbook for automatic parameter calculation of EPG data. Comput Electron Agric 67(1–2):35–42

    Article  Google Scholar 

  • Sauvion N, Charles H, Febvay G, Rahbé Y (2004) Effects of jackbean lectin (ConA) on the feeding behaviour and kinetics of intoxication of the pea aphid Acyrthosiphon pisum. Entomol Exp Appl 110(1):31–44. doi:10.1111/j.0013-8703.2004.00117.x

    Article  CAS  Google Scholar 

  • Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407(6800):81–86

    Article  CAS  PubMed  Google Scholar 

  • Shigenobu S, Watanabe H, Sakaki Y, Ishikawa H (2001) Accumulation of species-specific amino acid replacements that cause loss of particular protein functions in Buchnera, an endocellular bacterial symbiont. J Mol Evol 53:377–386

    Article  CAS  PubMed  Google Scholar 

  • The International Aphid Genomics C (2010) Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol 8(2):e1000313

    Article  Google Scholar 

  • Thompson GA, Goggin FL (2006) Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. J Exp Bot 57(4):755–766

    Article  CAS  PubMed  Google Scholar 

  • Tjallingii WF (1978a) Stylet penetration activities by aphids: new correlations with electrical penetration graphs. In: Labeyrie V, Fabres G, Lachaise D (eds) Proceedings of the 6th international symposium on insect–plant relationships, Pau, France, 1987. W. Junk Publishers, pp 301–306

  • Tjallingii WF (1978b) Electronic recording of penetration behaviour by aphids. Entomol Exp Appl 24:721–730

    Article  Google Scholar 

  • Tjallingii WF (1985) Electrical nature of recorded signals during stylet penetration by aphids. Entomolo Exp Appl 38:177–186

    Article  Google Scholar 

  • Tjallingii WF (1988) Electrical recording of stylet penetration activities. In: Minks AK, Harrewijn P (eds) Aphids, their biology, natural enemies and control. Elsevier, Amsterdam, pp 95–108

    Google Scholar 

  • Tjallingii WF (1990a) Continuous recording of stylet penetration activities by aphids. In: Campbell RK, Eikenbary RD (eds) Aphid-plant genotype interactions. Elsevier, Amsterdam, pp 89–99

    Google Scholar 

  • Tjallingii WF (1990b) Stylet penetration parameters from aphids in relation to host-plant resistance. In: Insects-plants 89, vol 39. Akadémiai Kiado, Budapest, pp 411–419

  • Tjallingii WF (2006) Salivary secretions by aphids interacting with proteins of phloem wound responses. J Exp Bot 57:739–745

    Article  CAS  PubMed  Google Scholar 

  • Tjallingii WF, Cherqui A (1999) Aphid saliva and aphid-plant interactions. Exp Appl Entomol 10:169–174

    Google Scholar 

  • Tjallingii WF, Hogen Esch T (1993) Fine structure of aphid stylet routes in plant tissues in correlation with EPG signals. Physiol Entomol 18:189–200

    Article  Google Scholar 

  • Tsuchida T, Koga R, Shibao H, Matsumoto T, Fukatsu T (2002) Diversity and geographic distribution of secondary endosymbiotic bacteria in natural populations of the pea aphid Acyrthosiphon pisum. Mol Ecol 11(10):2123–2135

    Article  CAS  PubMed  Google Scholar 

  • Tsuchida T, Koga R, Horikawa M, Tsunoda T, Maoka T, Matsumoto S, Simon J-C, Fukatsu T (2010) Symbiotic bacterium modifies aphid body color. Science 330(6007):1102–1104. doi:10.1126/science.1195463

    Article  CAS  PubMed  Google Scholar 

  • Vandermoten S, Harmel N, Mazzucchelli G, De Pauw E, Haubruge E, Francis F (2014) Comparative analyses of salivary proteins from three aphid species. Insect Mol Biol 23:67–77

    Article  CAS  PubMed  Google Scholar 

  • Viñuelas J, Febvay G, Duport G, Colella S, Fayard J-M, Charles H, Rahbé Y, Calevro F (2011) Multimodal dynamic response of the Buchnera aphidicola pLeu plasmid to variations in leucine demand of its host, the pea aphid Acyrthosiphon pisum. Mol Microbiol 81(5):1271–1285. doi:10.1111/j.1365-2958.2011.07760.x

    Article  PubMed Central  PubMed  Google Scholar 

  • Von Burg S, Ferrari J, Müller CB, Vorburger C (2008) Genetic variation and covariation of susceptibility to parasitoids in the aphid Myzus persicae: no evidence for trade-offs. Proc R Soc B 275:1089–94

  • Vorburger C, Gehrer L, Rodriguez P (2010) A strain of the bacterial symbiont Regiella insecticola protects aphids against parasitoids. Biol Lett 6:109–111

    Article  PubMed Central  PubMed  Google Scholar 

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216

    CAS  PubMed  Google Scholar 

  • Walling LL (2008) Avoiding effective defenses: strategies employed by phloem-feeding insects. Plant Physiol 146:859–866

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Carolan JC, Hao FH, Nicholson JK, Wilkinson TL, Douglas AE (2010) Integrated metabonomic-proteomic analysis of an insect-bacterial symbiotic system. J Proteome Res 9(3):1257–1267. doi:10.1021/pr9007392

    Article  CAS  PubMed  Google Scholar 

  • Whitehead LF, Douglas AE (1993) A metabolic study of Buchnera, the intracellular bacterial symbionts of the pea aphid Acyrthosiphon pisum. J Gen Microbiol 139(4):821–826

    Article  CAS  Google Scholar 

  • Wilkinson TL (1998) The elimination of intracellular microorganisms from insects: an analysis of antibiotic-treatment in the pea aphid (Acyrthosiphon pisum). Comp Biochem Physiol Part A 119:871–881

    Article  Google Scholar 

  • Wilkinson TL, Douglas AE (1995) Aphid feeding, as influenced by disruption of the symbiotic bacteria: an analysis of the pea aphid (Acyrthosiphon pisum). J Insect Physiol 41(8):635–640

    Article  CAS  Google Scholar 

  • Will T, van Bel AJE (2006) Physical and chemical interactions between aphids and plants. J Exp Bot 57(4):729–737

    Article  CAS  PubMed  Google Scholar 

  • Will T, Tjallingii W, Thonnessen A, Bel A (2007) Molecular sabotage of plant defense by aphid saliva. Proc Natl Acad Sci U. S. A 104:10536–10541

  • Will T, Steckbauer K, Hardt M, van Bel AJE (2012) Aphid gel saliva: sheath structure, protein composition and secretory dependence on stylet-tip milieu. PLoS ONE 7(10):e46903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zarate SI, Kempema LA, Walling LL (2007) Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiol 143:866–875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu-Salzman K, Salzman RA, Ahn JE, Koiwa H (2004) Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant Physiol 134:420–431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Research Council of the National University of Salta, Argentina (UNSa), the National Council for Research and Technology, Argentina (CONICET), and United Stated Department of Agriculture—National Institute of Food and Agriculture award number 2010-65105-20558. We thank A. E. Douglas (Cornell University) for advice and support with the preparation of artificial diets. Thanks to the anonymous reviewers that helped to improve this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana E. Alvarez.

Additional information

Handling Editor: Guy Smagghe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machado-Assefh, C.R., Lopez-Isasmendi, G., Tjallingii, W.F. et al. Disrupting Buchnera aphidicola, the endosymbiotic bacteria of Myzus persicae, delays host plant acceptance. Arthropod-Plant Interactions 9, 529–541 (2015). https://doi.org/10.1007/s11829-015-9394-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-015-9394-8

Keywords

Navigation