Skip to main content
Log in

Personalisierte Medizin durch individuelle Genome

Personalized medicine using individual genomes

  • Schwerpunkt
  • Published:
medizinische genetik

Zusammenfassung

Die dynamische Entwicklung in der Sequenziertechnologie hat die technischen Kosten sowie die Zeit, die benötigt wird, ein individuelles Genom zu entschlüsseln, so dramatisch reduziert, dass die komplette Sequenzierung persönlicher Genome für Privatpersonen und Gesundheitssysteme finanzierbar wird. Die breite Verfügbarkeit individueller Genome wird die Medizin weiter in Richtung einer informationsbasierten Wissenschaft treiben und die Bedeutung der informationswissenschaftlichen Techniken erhöhen.

Abstract

Recent advances in sequencing technology have reduced the costs and time required to decode a single genome to the extent that complete sequencing of personal genomes becomes affordable for both private individuals and the health care system. The broad availability of individual genomes will drive medicine further towards an information-based science and the importance of IT solutions in medicine will increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Notes

  1. Steven Brenner merkte skeptisch an, „that it remains to be seen whether we will learn anything more important from our genomes than the need to use suncream, eat better and exercise more“ [17].

Literatur

  1. International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431: 931–945

    Article  Google Scholar 

  2. Levy S et al (2007) The diploid genome sequence of an individual human. PLoS Biol 5:e254

    Article  PubMed  Google Scholar 

  3. Wheeler DA et al (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452:872–876

    Article  CAS  PubMed  Google Scholar 

  4. Bentley DR et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59

    Article  CAS  PubMed  Google Scholar 

  5. Wang J et al (2008) The diploid genome sequence of an Asian individual. Nature 456:60–65

    Article  CAS  PubMed  Google Scholar 

  6. Ahn SM et al (2009) The first Korean genome sequence and analysis: Full genome sequencing for a socio-ethnic group. Genome Res 19:1622–1629

    Article  CAS  PubMed  Google Scholar 

  7. Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402

    Article  CAS  PubMed  Google Scholar 

  8. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    Article  CAS  PubMed  Google Scholar 

  9. Gupta PK (2008) Single-molecule DNA sequencing technologies for future genomics research. Trends Biotechnol 26:602–611

    Article  CAS  PubMed  Google Scholar 

  10. Kaput J et al (2009) Planning the human variome project: the Spain report. Hum Mutat 30:496–510

    Article  PubMed  Google Scholar 

  11. Mallal S et al (2008) HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med 358:568–579

    Article  PubMed  Google Scholar 

  12. Becquemont L (2008) Evidence for a pharmacogenetic adapted dose of oral anticoagulant in routine medical practice. Eur J Clin Pharmacol 64:953–960

    Article  PubMed  Google Scholar 

  13. Ley TJ et al (2008) DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 456:66–72

    Article  CAS  PubMed  Google Scholar 

  14. Altshuler D, Daly MJ, Lander ES (2008) Genetic mapping in human disease. Science 322:881–888

    Article  CAS  PubMed  Google Scholar 

  15. Lohmueller KE, Pearce CL, Pike M et al (2003) Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 33:177–182

    Article  CAS  PubMed  Google Scholar 

  16. Palsdottir A et al (2008) A drastic reduction in the life span of cystatin C L68Q carriers due to life-style changes during the last two centuries. PLoS Genet 4:e1000099

    Article  PubMed  Google Scholar 

  17. Brenner SE (2007) Common sense for our genomes. Nature 449:783–784

    Article  CAS  PubMed  Google Scholar 

  18. Yoshiura K et al (2006) A SNP in the ABCC11 gene is the determinant of human earwax type. Nat Genet 38:324–330

    Article  CAS  PubMed  Google Scholar 

  19. Ng PC, Murray SS, Levy S, Venter JC (2009) An agenda for personalized medicine. Nature 461:724–726

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Krawitz Dipl.-Phys..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krawitz, P. Personalisierte Medizin durch individuelle Genome. medgen 22, 248–253 (2010). https://doi.org/10.1007/s11825-010-0216-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11825-010-0216-1

Schlüsselwörter

Keywords

Navigation