Skip to main content
Log in

Hydrothermal synthesis of titanate nanotubes followed by electrodeposition process

  • Materials (Organic, Inorganic, Electronic, Thin Films), Polymer, Fluidization, Particle Technology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Titanate nanotubes were synthesized by hydrothermal process using commercial titania nanoparticles. The experiments were carried out as a function of reaction time, temperature, and NaOH concentration. Furthermore, the titanate nanotube film was fabricated on the Si substrate using electrodeposition method with 60 V and at room temperature. The specimens were investigated by using various techniques such as field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman Spectroscopy, and Xray photoelectron spectroscopy (XPS). The formation of sodium titanate nanotubes was affected strongly by the variation in all parameters. The best conditions for the titanate nanotubes were found to be a reaction temperature of 150°C, 10 M NaOH concentration, and reaction time of 48 hr. Under the best conditions, the resulting titanate nanotubes did not contain any remains of starting material, namely P25 nanoparticles, and also the resulting nanotubes had very smooth morphology with a diameter of ∼10 nm and length extending up to several micrometers without presence of any bundlelike structures. The washing of sodium titanate nanotubes with HCl solution leads to conversion into protonic titanate nanotubes via ion exchange reaction. The subsequent sintering of the titanate nanotubes renders dehydration of interlayered OH groups, thereby leading to precipitation of anatase phase. The tubular structure also gets destroyed during phase change, beyond 375°C. The electrodeposited titanate film with 60 V for 10 min at room temperature was dense and uniform. In this work, we suggest that electrochemical deposition method of titanate nanotubes film can be used for its applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen, Q., Du, G. H., Zhang, S. and Peng, L. M., “The structure of trititanate nanotubes,” Acta Crystallogr. B, 58, 587 (2002).

    Article  CAS  Google Scholar 

  • Chen, Q., Zhou, W., Du, G. and Peng, L. M., “Trititanate nanotubes made via a single alkali treatment,” Adv. Mater., 14, 1208 (2002).

    Article  CAS  Google Scholar 

  • Chevaleevski, O. and Larina, L., “New trends in solar photovoltaics: From physics to chemistry,” Korean J. Chem. Eng., 18, 403 (2001).

    Article  CAS  Google Scholar 

  • Du, G.H., Chen, Q., Che, R. C., Yuan, Z.Y. and Peng, L.M., “Preparation and structure analysis of titanium oxide nanotubes,” Appl. Phys. Lett., 79, 3702 (2001).

    Article  CAS  Google Scholar 

  • Fujishima, T. and Honda, K., “Electrochemical photolysis of water at a semiconductor electrode,” Nature, 238, 37 (1972).

    Article  CAS  Google Scholar 

  • Godbole, V. P., Kim, G. S., Dar, M.A., Kim, Y. S., Seo, H.K., Khang, G. and Shin, H. S., “Hot filament chemical vapour deposition processing of titanate nanotube coatings,” Nanotechnology, 16, 1186 (2005).

    Article  CAS  Google Scholar 

  • Hoyer, P., “Formation of a titanium dioxide nanotube array,” Langmuir, 12, 1411 (1996).

    Article  CAS  Google Scholar 

  • Imai, H., Takei, Y., Matsuda, M. and Hirashima, H., “Direct preparation of anatase TiO2 nanotubes in porous alumina membranes,” J. Mater. Chem., 9, 2971 (1999).

    Article  CAS  Google Scholar 

  • Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. and Niihara, K., “Formation of titanium oxide nanotube,” Langmuir, 14, 3160 (1998).

    Article  CAS  Google Scholar 

  • Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. and Niihara, K., “Titania nanotubes prepared by chemical processing,” Adv. Mater., 11(15), 1307 (1999).

    Article  CAS  Google Scholar 

  • Kim, G.-S., Godbole, V. P., Seo, H.-K., Kim, Y.-S. and Shin, H.-S., “Sodium removal from titanate nanotubes in electrodeposition process,” Electrochemistry Communication, 8, 471 (2006).

    Article  CAS  Google Scholar 

  • Kim, J. S. and Lee, T. K., “Effect of humidity on the photocatalytic degradation of trichloroethylene in gas phase over TiO2 thin films treated by different conditions,” Korean J. Chem. Eng., 18, 935 (2001).

    Article  CAS  Google Scholar 

  • Kim, J. H., Noh, B. H., Lee, G.-D. and Hong, S.-S., “Hydrothermal synthesis of titanium dioxide using acidic petizing agents and their photocatalytic activity,” Korean J. Chem. Eng., 22, 370 (2005).

    Article  CAS  Google Scholar 

  • Kim, S.-H., Umar, A. and Hahn, Y.-B., “Growth and formation mechanism of sea urchin-like ZnO nanostructures on Si,” Korean J. Chem. Eng., 22, 489 (2005).

    Article  CAS  Google Scholar 

  • Lee, B.-Y., Park, S.-H., Lee, S.-C., Kang, M., Park, C.-H. and Choung, S.-J., “Optical properties of Pt-TiO2 catalyst and photocatalytic activities for benzene decomposition,” Korean J. Chem. Eng., 20, 812 (2003).

    Article  CAS  Google Scholar 

  • Lee, J., Nam, S.C. and Tak, Y., “On the origin of electrodeposition mechanism of ZnO on ITO substrate,” Korean J. Chem. Eng., 22, 161 (2005).

    Article  CAS  Google Scholar 

  • Moulder, J. F., Stickle, W. F., Sobol, P. E. and Bomben, K.D., Handbook of X-ray photoelectron spectroscopy, Physical Electronics, Inc. Eden Praire, Minnesota 55344, USA (1992).

    Google Scholar 

  • Na, Y., Song, S. and Park, Y., “Photocatalytic decolorization of rhodamine B by immobilized TiO2/UV in a fluidized-bed reactor,” Korean J. Chem. Eng., 22, 196 (2005).

    Article  CAS  Google Scholar 

  • Nam, W. S. and Han, G.Y., “A photocatalytic performance of TiO2 photocatalyst prepared by the hydrothermal method,” Korean J. Chem. Eng., 20, 180 (2003).

    Article  CAS  Google Scholar 

  • Oh, C.W., Lee, G.-D., Park, S. S., Ju, C.-S. and Hong, S.-S., “Preparation of nanosized TiO2 particales via ultrasonic irradiation and their photocatalytic activity on the decomposition of 4-nitrophenol,” Korean J. Chem. Eng., 22, 547 (2005).

    Article  CAS  Google Scholar 

  • O’Regan, B. and Gratzel, M., “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, 353, 737 (1991).

    Article  CAS  Google Scholar 

  • Powell, C. J., “Elemental binding energies for X-ray photoelectron spectroscopy,” Applied Surface Science, 89, 141 (1995).

    Article  CAS  Google Scholar 

  • Seo, D. S., Lee, J. M. and Kim, H., “Preparation of nanotube-shaped TiO2 powder,” J. Cryst. Growth, 229, 428 (2001).

    Article  CAS  Google Scholar 

  • Sun, X. and Li, Y., “Synthesis and characterization of ion-exchangeable titanate nanotubes,” Chem. Eur. J., 9, 2229 (2003).

    Article  CAS  Google Scholar 

  • Yao, B. D., Chan, Y. F., Zhang, X.Y., Yang, W.Y. and Wang, N., “Formation mechanism of TiO2 nanotubes,” Appl. Phys. Lett., 82, 281 (2003).

    Article  CAS  Google Scholar 

  • Zhang, S., Li, W., Jin, Z., Yang, J., Zhang, J., Du, Z. and Zhang, Z., “Study on ESR and inter-related properties of vacuum-dehydrated nanotubed titanic acid,” J. Sol. State Chem., 177, 1365 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung-Shik Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, GS., Kim, YS., Seo, HK. et al. Hydrothermal synthesis of titanate nanotubes followed by electrodeposition process. Korean J. Chem. Eng. 23, 1037–1045 (2006). https://doi.org/10.1007/s11814-006-0027-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-006-0027-x

Key words

Navigation