Skip to main content
Log in

Generalized metric spaces: A survey

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

Banach’s contraction mapping principle is remarkable in its simplicity, yet it is perhaps the most widely applied fixed point theorem in all of analysis with special applications to the theory of differential and integral equations. Because the underlined space of this theorem is a metric space, the theory that developed following its publication is known as the metric fixed point theory. Over the last one hundred years, many people have tried to generalize the definition of a metric space. In this paper, we survey the most popular generalizations and we discuss the recent uptick in some generalizations and their impact in metric fixed point theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. A. Abdou and M. A. Khamsi, Fixed point results of pointwise contractions in modular metric spaces. Fixed Point Theory Appl. 2013 (2013), doi:10.1186/1687-1812-2013-163.

  2. A. A. Abdou and M. A. Khamsi, On the fixed points of nonexpansive mappings in modular metric spaces. Fixed Point Theory Appl. 2013 (2013), doi:10.1186/1687-1812-2013-229.

  3. Agarwal R. P.: Contraction and approximate contraction with an application to multipoint boundary value problems. J. Comput. Appl. Math. 9, 315–325 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aronszajn N., Panitchpakdi P.: Extensions of uniformly continuous transformations and hyperconvex metric spaces. Pacific J. Math. 6, 405–439 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  5. Banaschewski B., Bruns G.: Categorical characterization of the MacNeille completion. Arch. Math. (Basel) 18, 369–377 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  6. S. R. Bernfeld and V. Lakshmikantham, An Introduction to Nonlinear Boundary Value Problems. Academic Press, New York, 1974.

  7. V. V. Chistyakov, Modular metric spaces. I. Basic concepts. Nonlinear Anal. 72 (2010), 1–14.

  8. V. V. Chistyakov, Modular metric spaces. II. Application to superposition operators. Nonlinear Anal. 72 (2010), 15–30.

  9. H. Covitz and S. B. Nadler, Jr., Multi-valued contraction mappings in generalized metric spaces. Israel J. Math. 8 (1970), 5–11.

  10. S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces. Atti Semin. Mat. Fiz. Univ. Modena 46 (1998), 263–276.

  11. H. Dehghan, M. Eshaghi Gordji and A. Ebadian, Comment on ‘Fixed point theorems for contraction mappings in modular metric spaces, Fixed Point Theory and Applications, doi:10.1186/1687-1812-2011-93, 20 pages’. Fixed Point Theory Appl. 2012 (2012), doi:10.1186/1687-1812-2012-144.

  12. Dhage B.C.: Generalised metric spaces and mappings with fixed point. Bull. Calcutta Math. Soc. 84, 329–336 (1992)

    MATH  MathSciNet  Google Scholar 

  13. B. C. Dhage, Generalized metric spaces and topological structure. I. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 46 (2000), 3–24.

  14. B. C. Dhage, On generalized metric spaces and topological structure. II. Pure. Appl. Math. Sci. 40 (1994), 37–41.

  15. B. C. Dhage, On continuity of mappings in D-metric spaces. Bull. Calcutta Math. Soc. 86 (1994), 503–508.

  16. B. C. Dhage, Generalized D-metric spaces and multi-valued contraction mappings. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 44 (1998), 179–200.

  17. L. Diening, Theoretical and numerical results for electrorheological fluids. Ph.D. Thesis, University of Freiburg, Germany, 2002.

  18. W.-S. Du, A note on cone metric fixed point theory and its equivalence. Nonlinear Anal. 72 (2010), 2259–2261.

  19. M. Escardó, Synthetic topology: of data types and classical spaces. Electron. Notes Theor. Comput. Sci. 87 (2004), 21–156.

  20. M. Fitting, Metric methods: Three examples and a theorem. J. Logic Programming 21 (1994), 113–127.

  21. M. Fitting, Fixpoint semantics for logic programming: A survey. Theoret. Comput. Sci. 278 (2002), 25–51.

  22. M. Fréchet, Sur quelques points du calcul fonctionnel. Rend. Circ. Mat. Palermo 22 (1906), 1–72.

  23. S. Gähler, 2-metriche räume und ihre topologische struktur. Math. Nachr. 26 (1963), 115–148.

  24. S. Gähler, Zur geometric 2-metriche raüme. Rev. Roumaine Math. Pures Appl. 40 (1966), 664–669.

  25. K. S. Ha, Y. J. Cho and A. White, Strictly convex and strictly 2-convex 2- normed spaces. Math. Japon. 33 (1988), 375–384.

  26. P. Harjulehto, P. Hästö, M. Koskenoja and S. Varonen, The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values. Potential Anal. 25 (2006), 205–222.

  27. F. Hausdorff, Grundzüge der Mengenlehre. Leipzig, 1914.

  28. J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations. The Clarendon Press, Oxford University Press, New York, 1993.

  29. L.-G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl. 332 (2007), 1468–1476.

  30. S. Janković, Z. Kadelburg and S. Radenović, On cone metric spaces: A survey. Nonlinear Anal. 74 (2011), 2591–2601.

  31. E. Jawhari, M. Pouzet and D. Misane, Retracts: Graphs and ordered sets from the metric point of view. In: Combinatorics and Ordered Sets (Arcata, Calif., 1985), Contemp. Math. 57, Amer. Math. Soc., Providence, RI, 1986, 175–226.

  32. Z. Kadelburg, S. Radenović and V. Rakočević, A note on the equivalence of some metric and cone metric fixed point results. Appl. Math. Lett. 24 (2011), 370–374.

  33. M. A. Khamsi, Remarks on cone metric spaces and fixed point theorems of contractive mappings. Fixed Point Theory Appl. 2010 (2010), doi:10.1155/2010/315398.

  34. M. A. Khamsi and W. A. Kirk, An Introduction to Metric Spaces and Fixed Point Theory. John Wiley, New York, 2001.

  35. M. A. Khamsi, W. K. Kozlowski and S. Reich, Fixed point theory in modular function spaces. Nonlinear Anal. 14 (1990), 935–953.

  36. M. A. Khamsi, V. Kreinovich and D. Misane, A new method of proving the existence of answer sets for disjunctive logic programs: A metric fixed point theorem for multivalued mappings. In: Proceedings of the Workshop on Logic Programming with Incomplete Information (Vancouver, B.C., Canada, 1993), C. Baral and M. Gelfond, eds., University of British Columbia, Vancouver, BC, 1993, 58–73

  37. L. Kantorovich, The method of successive approximations for functional equations. Acta Math. 71 (1939), 63–97.

  38. W. A. Kirk and N. Shahzad, Fixed Point Theory in Distance Spaces. Springer, Cham, 2014.

  39. B. Knaster, Un théorème sur les fonctions d’ensembles. Ann. Soc. Polon. Math. 6 (1928), 133–134.

  40. W. M. Kozlowski, Notes on modular function spaces. I. Comment. Math. 28 (1988), 91–104.

  41. W. M. Kozlowski, Notes on modular function spaces. II. Comment. Math. 28 (1988), 105–120.

  42. W. M. Kozlowski, Modular Function Spaces. Series of Monographs and Textbooks in Pure and Applied Mathematics 122, Dekker, New York, 1988.

  43. G. S. Ladde, V. Lakshmikantham and A. S. Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations. Monographs, Advanced Texts and Surveys in Pure and Applied Mathematics 27, Pitman, Boston, 1985.

  44. F. W. Lawvere, Metric spaces, generalized logic, and closed categories. Repr. Theory Appl. Categ. 1 (2002), 1–37.

  45. S. G. Matthews, Partial Metric Topology. In: Papers on General Topology and Applications (Flushing, NY, 1992), Ann. New York Acad. Sci. 728, New York Acad. Sci., New York, 1994, 183–197.

  46. C. Mongkolkeha, W. Sintunavarat and P. Kumam, Fixed point theorems for contraction mappings in modular metric spaces. Fixed Point Theory Appl. 2011 (2011), doi:10.1186/1687-1812-2011-93.

  47. C. Mongkolkeha, W. Sintunavarat and P. Kumam, Correction: Fixed point theorems for contraction mappings in modular metric spaces, Fixed Point Theory Appl. 2011, 2011:93. Fixed Point Theory Appl. 2012 (2012), doi:10.1186/1687-1812-2012-103.

  48. J. Musielak, Orlicz Spaces and Modular Spaces. Lecture Notes in Math. 1034, Springer, Berlin, 1983.

  49. Z. Mustafa and B. Sims, Some remarks concerning D-metric spaces. In: Proceedings of the Internatinal Conference on Fixed Point Theorey and Applications (Valencia, Spain, 2003), Yokohama Publ., Yokohama, 2004, 189–198.

  50. Z. Mustafa and B. Sims, A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 7 (2006), 289–297.

  51. Z. Mustafa and B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces. Fixed Point Theory Appl. 2009 (2009), doi:10.1155/2009/917175.

  52. H. Nakano, Modulared Semi-Ordered Linear Spaces. Maruzen, Tokyo, 1950.

  53. J. J. Nieto and R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 22 (2005), 223–239.

  54. W. Orlicz,Collected Papers. Part I, II. PWN—Polish Scientific Publishers, Warsaw, 1988.

  55. A. Perov and A. Kibenko, On a certain general method for investigation of boundary value problems. Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 249–264.

  56. A. Quilliot, Homomorphismes, points fixes, retractions et jeux de poursuite dans les graphes, les ensembles ordonnes et les espaces metriques. Thèse de Doctorat d’État, Paris, 1983.

  57. A. C. Ran and M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Amer. Math. Soc. 132 (2004), 1435–1443.

  58. D. Reem and S. Reich, Zone and double zone diagrams in abstract spaces. Colloq. Math. 115 (2009), 129–145.

  59. S. Reich, Fixed points of contractive functions. Boll. Unione Mat. Ital. 5 (1972), 26–42.

  60. M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Math. 1748, Berlin, Springer, 2000.

  61. B. Rzepecki, On fixed point theorems of Maia type. Publ. Inst. Math. (Beograd) (N.S.) 28 (1980), 179–186.

  62. A. K. Seda and P. Hitzler, Generalized distance functions in the theory of computation. Computer Journal 53 (2010), 443–464.

  63. R. C. Sine, On linear contraction semigroups in sup norm spaces. Nonlinear Anal. 3 (1979), 885–890.

  64. P. Soardi, Existence of fixed points of nonexpansive mappings in certain Banach lattices. Proc. Amer. Math. Soc. 73 (1979), 25–29.

  65. L. A. Steen and J. A. Seebach, Jr., Counterexamples in Topology. Springer, New York, 1978.

  66. A. Tarski, A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5 (1955), 285–309.

  67. M. Urabe, An existence theorem for multi-point boundary value problems. Funkcial. Ekvac. 9 (1966), 43–60.

  68. W. A. Wilson, On semi-metric spaces. Amer. J. Math. 53 (1931), 361–373.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Khamsi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khamsi, M.A. Generalized metric spaces: A survey. J. Fixed Point Theory Appl. 17, 455–475 (2015). https://doi.org/10.1007/s11784-015-0232-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-015-0232-5

Mathematics Subject Classification

Keywords

Navigation