Skip to main content
Log in

Activated carbons and amine-modified materials for carbon dioxide capture — a review

  • Review Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Rapidly increasing concentration of CO2 in the atmosphere has drawn more and more attention in recent years, and adsorption has been considered as an effective technology for CO2 capture from the anthropogenic sources. In this paper, the attractive adsorbents including activated carbons and amine-modified materials were mainly reviewed and discussed with particular attention on progress in the adsorbent preparation and CO2 adsorption capacity. Carbon materials can be prepared from different precursors including fossil fuels, biomass and resins using the carbonization-activation or only activation process, and activated carbons prepared by KOH activation with high CO2 adsorbed amount were reviewed in the preparation, adsorption capacity as well as the relationship between the pore characteristics and CO2 adsorption. For the amine-modified materials, the physical impregnation and chemical graft of polyethylenimine (PEI) on the different porous materials were introduced in terms of preparation method and adsorption performance as well as their advantages and disadvantages for CO2 adsorption. In the last section, the issues and prospect of solid adsorbents for CO2 adsorption were summarized, and it is expected that this review will be helpful for the fundamental studies and industrial applications of activated carbons and amine-modified adsorbents for CO2 capture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Metz B, Davidson O, de Coninck H, Loos M, Meye L. Special Report on Carbon Dioxide Capture and Storage, http://www.ipcc.ch/

  2. Trachtenberg M C, Cowan R M, Smith D A. In: Proceedings of the Sixth Annual Conference on Carbon Capture & Sequestration, Pittsburgh, 2007

    Google Scholar 

  3. http://en.wikipedia.org/wiki/Atmosphere_of_Earth#cite_note-0

  4. www.srl.noaa.gov/gmd/ccgg/trends/

  5. D’Alessandro D M, Smit B, Long J R. Carbon dioxide capture: prospects for new materials. Angewandte Chemie International Edition, 2010, 49(35): 6058–6082

    Article  Google Scholar 

  6. Chaffee A L, Knowles G P, Liang Z, Zhang J, Xiao P, Webley P A. CO2 capture by adsorption: materials and process development. International Journal of Greenhouse Gas Control, 2007, 1(1): 11–18

    Article  CAS  Google Scholar 

  7. Jassim M S, Rochelle G, Eimer D, Ramshaw C. Carbon dioxide absorption and desorption in aqueous monoethanolamine solutions in a rotating packed bed. Industrial & Engineering Chemistry Research, 2007, 46(9): 2823–2833

    Article  CAS  Google Scholar 

  8. Shen C Z, Grande C A, Li P, Yu J G, Rodrigues A E. Adsorption equilibria and kinetics of CO2 and N2 on activated carbon beads. Chemical Engineering Journal, 2010, 160(2): 398–407

    Article  CAS  Google Scholar 

  9. Shen W Z, He Y, Zhang S C, Li J F, Fan W B. Yeast-based microporous carbon materials for carbon dioxide capture. ChemSusChem, 2012, 5(7): 1274–1279

    Article  CAS  Google Scholar 

  10. Bae Y S, Snurr R Q. Development and evaluation of porous materials for carbon dioxide separation and capture. Angewandte Chemie International Edition, 2011, 50(49): 11586–11596

    Article  CAS  Google Scholar 

  11. Liu J, Thallapally P K, McGrail B P, Brown D R, Liu J. Progress in adsorption-based CO2 capture by metal-organic frameworks. Chemical Society Reviews, 2012, 41(6): 2308–2322

    Article  CAS  Google Scholar 

  12. Samanta A, Zhao A, Shimizu G H, Sarkar P, Gupta R. Postcombustion CO2 capture using solid sorbents: a review. Industrial & Engineering Chemistry Research, 2012, 51(4): 1438–1463

    Article  CAS  Google Scholar 

  13. Siriwardane R V, Shen M S, Fisher E P, Losch J. Adsorption of CO2 on zeolites at moderate temperatures. Energy & Fuels, 2005, 19(3): 1153–1159

    Article  CAS  Google Scholar 

  14. Heydari-Gorji A, Belmabkhout Y, Sayari A. Polyethylenimineimpregnated mesoporous silica: effect of amine loading and surface alkyl chains on CO2 adsorption. Langmuir, 2011, 27(20): 12411–12416

    Article  CAS  Google Scholar 

  15. Lee S, Filburn T P, Gray M, Park J W, Song H J. Screening test of solid amine sorbents for CO2 capture. Industrial & Engineering Chemistry Research, 2008, 47(19): 7419–7423

    Article  CAS  Google Scholar 

  16. Wang Q, Luo J Z, Zhong Z Y, Borgna A. CO2 capture by solid adsorbents and their applications: current status and new trends. Energy & Environmental Science, 2011, 4(1): 42–55

    Article  CAS  Google Scholar 

  17. Koirala R, Reddy G K, Smirniotis P G. Single nozzle flame-made highly durable metal doped Ca-based sorbents for CO2 capture at high temperature. Energy & Fuels, 2012, 26(5): 3103–3109

    Article  CAS  Google Scholar 

  18. Brandani F, Ruthven D M. The effect of water on the adsorption of CO2 and C3H8 on type X zeolites. Industrial & Engineering Chemistry Research, 2004, 43(26): 8339–8344

    Article  CAS  Google Scholar 

  19. Li G, Xiao P, Webley P, Zhang J, Singh R, Marshall M. Capture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13X. Adsorption, 2008, 14(2–3): 415–422

    Article  CAS  Google Scholar 

  20. Silvestre-Albero J, Wahby A, Sepúlveda-Escribano A, Martínez-Escandell M, Kaneko K, Rodríguez-Reinoso F. Ultrahigh CO2 adsorption capacity on carbon molecular sieves at room temperature. Chemical Communications, 2011, 47(24): 6840–6842

    Article  CAS  Google Scholar 

  21. Plaza M G, Pevida C, Arias B, Fermoso J, Rubiera F, Pis J J. A comparison of two methods for producing CO2 capture adsorbents. Energy Procedia, 2009, 1(1): 1107–1113

    Article  CAS  Google Scholar 

  22. Siriwardane R V, Shen M S, Fisher E P, Poston J A. Adsorption of CO2 on molecular sieves and activated carbon. Energy & Fuels, 2001, 15(2): 279–284

    Article  CAS  Google Scholar 

  23. Drage T C, Blackman J M, Pevida C, Snape C E. Evaluation of activated carbon adsorbents for CO2 capture in gasification. Energy & Fuels, 2009, 23(5): 2790–2796

    Article  CAS  Google Scholar 

  24. Sevilla M, Valle-Vigon P, Fuertes A B. N-Doped polypyrrolebased porous carbons for CO2 capture. Advanced Functional Materials, 2011, 21(14): 2781–2787

    Article  CAS  Google Scholar 

  25. Hao G P, Li W C, Qian D, Lu A H. Rapid synthesis of nitrogendoped porous carbon monolith for CO2 capture. Advanced Materials, 2010, 22(7): 853–857

    Article  CAS  Google Scholar 

  26. Drage T C, Arenillas A, Smith K M, Pevida C, Piippo S, Snape C E. Preparation of carbon dioxide adsorbents from the chemical activation of urea-formaldehyde and melamine-formaldehyde resins. Fuel, 2007, 86(1–2): 22–31

    Article  CAS  Google Scholar 

  27. Chandra V, Yu S U, Kim S H, Yoon Y S, Kim D Y, Kwon A H, Meyyappan M, Kim K S. Highly selective CO2 capture on Ndoped carbon produced by chemical activation of polypyrrole functionalized graphene sheets. Chemical communications, 2012, 48(5): 735–737

    Article  CAS  Google Scholar 

  28. Chen C, Kim J, Ahn W S. Efficient carbon dioxide capture over a nitrogen-rich carbon having a hierarchical micro-mesopore structure. Fuel, 2012, 95(1): 360–364

    Article  CAS  Google Scholar 

  29. Alcañiz-Monge J, Marco-Lozar J P, Lillo-Rodenas M A. CO2 separation by carbon molecular sieve monoliths prepared from nitrated coal tar pitch. Fuel Processing Technology, 2011, 92(5): 915–919

    Article  Google Scholar 

  30. Wahby A, Ramos-Fernández J M, Martínez-Escandell M, Sepúlveda-Escribano A, Silvestre-Albero J, Rodríguez-Reinoso F. High-surface-area carbon molecular sieves for selective CO2 adsorption. ChemSusChem, 2010, 3(8): 974–981

    Article  CAS  Google Scholar 

  31. Hu X, Radosz M, Cychosz K A, Thommes M. CO2-filling capacity and selectivity of carbon nanopores: synthesis, texture, and poresize distribution from quenched-solid density functional theory (QSDFT). Environmental Science & Technology, 2011, 45(16): 7068–7074

    Article  CAS  Google Scholar 

  32. Maroto-Valer M M, Tang Z, Zhang Y Z. CO2 capture by activated and impregnated anthracites. Fuel Processing Technology, 2005, 86(14–15): 1487–1502

    Article  CAS  Google Scholar 

  33. Olivares-Marín M, Maroto-Valer M M. Preparation of a highly microporous carbon from a carpet material and its application as CO2 sorbent. Fuel Processing Technology, 2011, 92(3): 322–329

    Article  Google Scholar 

  34. Drage T C, Blackman J M, Pevida C, Snape C E. Evaluation of activated carbon adsorbents for CO2 capture in gasification. Energy & Fuels, 2009, 23(5): 2790–2796

    Article  CAS  Google Scholar 

  35. Sevilla M, Fuertes A B. Sustainable porous carbons with a superior performance for CO2 capture. Energy & Environmental Science, 2011, 4(5): 1765–1771

    Article  CAS  Google Scholar 

  36. Plaza M G, Pevida C, Martín C F, Fermoso J, Pis J J, Rubiera F. Developing almond shell-derived activated carbons as CO2 adsorbents. Separation and Purification Technology, 2010, 71(1): 102–106

    Article  CAS  Google Scholar 

  37. Plaza M G, Pevida C, Arias B, Fermoso J, Casal M D, Martín C F, Rubiera F, Pis J J. Development of low-cost biomass-based adsorbents for postcombustion CO2 capture. Fuel, 2009, 88(12): 2442–2447

    Article  CAS  Google Scholar 

  38. Thote J A, Iyer K S, Chatti R, Labhsetwar N K, Biniwale R B, Rayalu S S. In situ nitrogen enriched carbon for carbon dioxide capture. Carbon, 2010, 48(2): 396–402

    Article  CAS  Google Scholar 

  39. Hao G P, Li WC, Qian D, Wang G H, Zhang WP, Zhang T, Wang A Q, Schüth F, Bongard H J, Lu A H. Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents. Journal of the American Chemical Society, 2011, 133(29): 11378–11388

    Article  CAS  Google Scholar 

  40. Saha D, Deng S G. Adsorption equilibrium and kinetics of CO2, CH4, N2O, and NH3 on ordered mesoporous carbon. Journal of Colloid and Interface Science, 2010, 345(2): 402–409

    Article  CAS  Google Scholar 

  41. Wang L F, Yang R T. Significantly Increased CO2 adsorption performance of nanostructured templated carbon by tuning surface area and nitrogen doping. Journal of Physical Chemistry C, 2012, 116(1): 1099–1106

    Article  CAS  Google Scholar 

  42. Xia Y D, Mokaya R, Walker G S, Zhu Y Q. Superior CO2 adsorption capacity on N-doped, high-surface-area, microporous carbons templated from zeolite. Advanced Energy Materials, 2011, 1(4): 678–683

    Article  CAS  Google Scholar 

  43. Pevida C, Drage T C, Snape C E. Silica-templated melamineformaldehyde resin derived adsorbents for CO2 capture. Carbon, 2008, 46(11): 1464–1474

    Article  CAS  Google Scholar 

  44. Li Q, Yang J P, Feng D, Wu Z X, Wu Q L, Park S S, Ha C S, Zhao D Y. Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture. Nano Research, 2010, 3(9): 632–642

    Article  CAS  Google Scholar 

  45. Silvestre-Albero J, Wahby A, Sepúlveda-Escribano A, Martínez-Escandell M, Kaneko K, Rodríguez-Reinoso F. Ultrahigh CO2 adsorption capacity on carbon molecular sieves at room temperature. Chemical Communications, 2011, 47(24): 6840–6842

    Article  CAS  Google Scholar 

  46. Presser V, McDonough J, Yeon S H, Gogotsi Y. Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energy & Environmental Science, 2011, 4(8): 3059–3066

    Article  CAS  Google Scholar 

  47. Garrido J, Linares-Solano A, Martin-Martinez J M, Molina-Sabio M, Rodriguez-Reinoso F, Torregrosa R. Use of nitrogen vs. carbon dioxide in the characterization of activated carbons. Langmuir, 1987, 3(1): 76–81

    Article  CAS  Google Scholar 

  48. Rios R A, Silvestre-Albero J, Sepúlveda-Escribano A, Molina-Sabio M, Rodríguez-Reinoso F. Kinetic restrictions in the characterization of narrow microporosity in carbon materials. Journal of Physical Chemistry C, 2007, 111(10): 3803–3805

    Article  CAS  Google Scholar 

  49. Wei H R, Deng S B, Hu B Y, Chen Z H, Wang B, Huang J, Yu G. Granular bamboo-derived activated carbon for high CO2 adsorption: the dominant role of narrow micropores. ChemSusChem, 2012, doi: 10.1002/cssc. 201200570

    Google Scholar 

  50. Wang Y X, Zhou Y P, Liu C M, Zhou L. Comparative studies of CO2 and CH4 sorption on activated carbon in presence of water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 322(1–3): 14–18

    Article  CAS  Google Scholar 

  51. Ma Z X, Kyotani T, Liu Z, Terasaki O, Tomita A. Very high surface area microporous carbon with a three-dimensional nano-array structure: synthesis and its molecular structure. Chemistry of Materials, 2001, 13(12): 4413–4415

    Article  CAS  Google Scholar 

  52. Xu X C, Song C S, Andresen JM, Miller B G, Scaroni AW. Novel Polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. 41 type as high-capacity adsorbent for CO2 capture. Energy & Fuels, 2002, 16(6): 1463–1469

    Article  CAS  Google Scholar 

  53. Chen C, Yang S T, Ahn W S, Ryoo R. Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO2 capture capacity. Chemical Communications, 2009, 45(24): 3627–3629

    Article  Google Scholar 

  54. Qi G G, Wang Y B, Estevez L, Duan X N, Anako N, Park A A, Li W, Jones C W, Giannelis E P. High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules. Energy & Environmental Science, 2011, 4(2): 444–452

    Article  CAS  Google Scholar 

  55. Wang J T, Long D H, Zhou H H, Chen Q J, Liu X J, Ling L C. Surfactant promoted solid amine sorbents for CO2 capture. Energy & Environmental Science, 2012, 5(2): 5742–5749

    Article  CAS  Google Scholar 

  56. Yan W, Tang J, Bian Z J, Hu J, Liu H L. Carbon dioxide capture by amine-impregnated mesocellular-foam-containing template. Industrial & Engineering Chemistry Research, 2012, 51(9): 3653–3662

    Article  CAS  Google Scholar 

  57. Wang D X, Ma X L, Sentorun-Shalaby C, Song C S. Development of carbon-based “molecular basket” sorbent for CO2 capture. Industrial & Engineering Chemistry Research, 2012, 51(7): 3048–3057

    Article  CAS  Google Scholar 

  58. Heydari-Gorji A, Yang Y, Sayari A. Effect of the pore length on CO2 adsorption over amine-modified mesoporous silicas. Energy & Fuels, 2011, 25(9): 4206–4210

    Article  CAS  Google Scholar 

  59. Gray M L, Hoffman J S, Hreha D C, Fauth D J, Hedges S W, Champagne K J, Pennline H W. Parametric study of solid amine sorbents for the capture of carbon dioxide. Energy & Fuels, 2009, 23(10): 4840–4844

    Article  CAS  Google Scholar 

  60. Chaikittisilp W, Kim H J, Jones C W. Mesoporous aluminasupported amines as potential steam-stable adsorbents for capturing CO2 from simulated flue gas and ambient air. Energy & Fuels, 2011, 25(11): 5528–5537

    Article  CAS  Google Scholar 

  61. Yan X L, Zhang Y, Qiao K, Li X, Zhang Z Q, Yan Z F, Komarneni S. Clover leaf-shaped Al2O3 extrudate as a support for highcapacity and cost-effective CO2 sorbent. Journal of Hazardous Materials, 2011, 192(3): 1505–1508

    Article  CAS  Google Scholar 

  62. Yan X L, Zhang L, Zhang Y, Yang G D, Yan Z F. Amine-modified SBA-15: effect of pore structure on the performance for CO2 capture. Industrial & Engineering Chemistry Research, 2011, 50(6): 3220–3226

    Article  CAS  Google Scholar 

  63. Son W J, Choi J S, Ahn W S. Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. Microporous and Mesoporous Materials, 2008, 113(1–3): 31–40

    Article  CAS  Google Scholar 

  64. Goeppert A, Czaun M, May R B, Prakash G K, Olah G A, Narayanan S R. Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent. Journal of the American Chemical Society, 2011, 133(50): 20164–20167

    Article  CAS  Google Scholar 

  65. Goeppert A, Meth S, Prakash G S, Olah G A. Nanostructured silica as a support for regenerable high-capacity organoamine-based CO2 sorbents. Energy & Environmental Science, 2010, 3(12): 1949–1960

    Article  CAS  Google Scholar 

  66. Li P Y, Ge B Q, Zhang S J, Chen S X, Zhang Q K, Zhao Y N. CO2 capture by polyethylenimine-modified fibrous adsorbent. Langmuir, 2008, 24(13): 6567–6574

    Article  CAS  Google Scholar 

  67. Li P Y, Zhang S J, Chen S X, Zhang Q K, Pan J J, Ge B Q. Preparation and adsorption properties of polyethylenimine containing fibrous adsorbent for carbon dioxide capture. Journal of Applied Polymer Science, 2008, 108(6): 3851–3858

    Article  CAS  Google Scholar 

  68. Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350): 548–552

    Article  CAS  Google Scholar 

  69. Subagyono D N, Liang Z J, Knowles G P, Chaffee A L. Amine modified mesocellular siliceous foam (MCF) as a sorbent for CO2. Chemical Engineering Research & Design, 2011, 89(9): 1647–1657

    Article  CAS  Google Scholar 

  70. Yan X L, Zhang L, Zhang Y, Qiao K, Yan Z F, Komarneni S. Amine-modified mesocellular silica foams for CO2 capture. Chemical Engineering Journal, 2011, 168(2): 918–924

    Article  CAS  Google Scholar 

  71. Chaikittisilp W, Khunsupat R, Chen T T, Jones C W. Poly (allylamine) mesoporous silica composite materials for CO2 capture from simulated flue gas or ambient air. Industrial & Engineering Chemistry Research, 2011, 50(24): 14203–14210

    Article  CAS  Google Scholar 

  72. Li J X, Zhou L H, Han X, Hu J, Liu H L, Xu J. Direct electrochemistry of hemoglobin immobilized on siliceous mesostructured cellular foam. Sensors and Actuators. B, Chemical, 2009, 138(2): 545–549

    CAS  Google Scholar 

  73. Smått J H, Schunk S, Lindén M. Versatile double-templating synthesis route to silica monoliths exhibiting a multimodal hierarchical porosity. Chemistry of Materials, 2003, 15(12): 2354–2361

    Article  Google Scholar 

  74. Qi G G, Wang Y B, Estevez L, Switzer A K, Duan X N, Yang X F, Giannelis E P. Facile and scalable synthesis of monodispersed spherical capsules with a mesoporous shell. Chemistry of Materials, 2010, 22(9): 2693–2695

    Article  CAS  Google Scholar 

  75. Yue M B, Chun Y, Cao Y, Dong X, Zhu J H. CO2 capture by asprepared SBA-15 with an occluded organic template. Advanced Functional Materials, 2006, 16(13): 1717–1722

    Article  CAS  Google Scholar 

  76. Yue M B, Sun L B, Cao Y, Wang Y, Wang Z J, Zhu J H. Efficient CO2 capturer derived from as-synthesized MCM-41 modified with amine. Chemistry A European Journal, 2008, 14(11): 3442–3451

    Article  CAS  Google Scholar 

  77. Li B Y, Jiang B B, Fauth D J, Gray ML, Pennline HW, Richards G A. Innovative nano-layered solid sorbents for CO2 capture. Chemical Communications, 2011, 47(6): 1719–1721

    Article  CAS  Google Scholar 

  78. Sayari A, Belmabkhout Y, Da’na E. CO2 deactivation of supported amines: does the nature of amine matter? Langmuir, 2012, 28(9): 4241–4247

    Article  CAS  Google Scholar 

  79. Sayari A, Belmabkhout Y. Stabilization of amine-containing CO2 adsorbents: dramatic effect of water vapor. Journal of the American Chemical Society, 2010, 132(18): 6312–6314

    Article  CAS  Google Scholar 

  80. Serna-Guerrero R, Belmabkhout Y, Sayari A. Influence of regeneration conditions on the cyclic performance of aminegrafted mesoporous silica for CO2 capture: an experimental and statistical study. Chemical Engineering Science, 2010, 65(14): 4166–4172

    Article  CAS  Google Scholar 

  81. Serna-Guerrero R, Da’na E, Sayari A. New insights into the interactions of CO2 with amine-functionalized silica. Industrial & Engineering Chemistry Research, 2008, 47(23): 9406–9412

    Article  CAS  Google Scholar 

  82. Huang H Y, Yang R T, Chinn D, Munson C L. Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas. Industrial & Engineering Chemistry Research, 2003, 42(12): 2427–2433

    Article  CAS  Google Scholar 

  83. Hiyoshi N, Yogo K, Yashima T. Adsorption characteristics of carbon dioxide on organically functionalized SBA-15. Microporous and Mesoporous Materials, 2005, 84(1–3): 357–365

    Article  CAS  Google Scholar 

  84. Kim S N, Son W J, Choi J S, Ahn W S. CO2 adsorption using amine-functionalized mesoporous silica prepared via anionic surfactant-mediated synthesis. Microporous and Mesoporous Materials, 2008, 115(3): 497–503

    Article  CAS  Google Scholar 

  85. Knowles G P, Graham J V, Delaney S W, Chaffee A L. Aminopropyl-functionalized mesoporous silicas as CO2 adsorbents. Fuel Processing Technology, 2005, 86(14–15): 1435–1448

    Article  CAS  Google Scholar 

  86. Zeleňák V, Badanicová M, Halamová D, Čejka J, Zukal A, Murafa N, Goerigk G. Amine-modified ordered mesoporous silica: effect of pore size on carbon dioxide capture. Chemical Engineering Journal, 2008, 144(2): 336–342

    Article  Google Scholar 

  87. Harlick P E, Sayari A. Applications of pore-expanded mesoporous silicas. 3. Triamine silane grafting for enhanced CO2 adsorption. Industrial & Engineering Chemistry Research, 2006, 45(9): 3248–3255

    Article  CAS  Google Scholar 

  88. Hiyoshi N, Yogo K, Yashima T. Adsorption of carbon dioxide on amine modified SBA-15 in the presence of water vapor. Chemistry Letters, 2004, 33(5): 510–511

    Article  CAS  Google Scholar 

  89. Hsu S C, Lu C S, Su F S, Zeng W T, Chen W F. Thermodynamics and regeneration studies of CO2 adsorption on multiwalled carbon nanotubes. Chemical Engineering Science, 2010, 65(4): 1354–1361

    Google Scholar 

  90. Su F, Lu C, Cnen W, Bai H, Hwang J F. Capture of CO2 from flue gas via multiwalled carbon nanotubes. The Science of the Total Environment, 2009, 407(8): 3017–3023

    Article  CAS  Google Scholar 

  91. Gebald C, Wurzbacher J A, Tingaut P, Zimmermann T, Steinfeld A. Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environmental Science & Technology, 2011, 45(20): 9101–9108

    Article  CAS  Google Scholar 

  92. Bhagiyalakshmi M, Yun L J, Anuradha R, Jang H T. Utilization of rice husk ash as silica source for the synthesis of mesoporous silicas and their application to CO2 adsorption through TREN/ TEPA grafting. Journal of Hazardous Materials, 2010, 175(1–3): 928–938

    Article  CAS  Google Scholar 

  93. Kassab H, Maksoud M, Aguado S, Pera-Titus M, Albela B, Bonneviot L. Polyethylenimine covalently grafted on mesostructured porous silica for CO2 capture. RSC Advances, 2012, 2(6): 2508–2516

    Article  CAS  Google Scholar 

  94. Lu W G, Sculley J P, Yuan D Q, Krishna R, Wei Z W, Zhou H C. Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas. Angewandte Chemie International Edition, 2012, 51(30): 7480–7484

    Article  CAS  Google Scholar 

  95. Drese J H, Choi S H, Lively R P, Koros WJ, Fauth D J, Gray M L, Jones C W. Synthesis-structure-property relationships for hyperbranched aminosilica CO2 adsorbents. Advanced Functional Materials, 2009, 19(23): 3821–3832

    Article  CAS  Google Scholar 

  96. Li W, Bollini P, Didas S A, Choi S H, Drese J H, Jones C W. Structural changes of silica mesocellular foam supported aminefunctionalized CO2 adsorbents upon exposure to steam. ACS Applied Materials & Interfaces, 2010, 2(11): 3363–3372

    Article  CAS  Google Scholar 

  97. Liang Z J, Fadhel B, Schneider C J, Chaffee A L. Adsorption of CO2 on mesocellular siliceous foam iteratively functionalized with dendrimers. Adsorption, 2009, 15(5–6): 429–437

    Article  CAS  Google Scholar 

  98. Yang Y, Li H C, Chen S X, Zhao Y N, Li Q H. Preparation and characterization of a solid amine adsorbent for capturing CO2 by grafting allylamine onto PAN fiber. Langmuir, 2010, 26(17): 13897–13902

    Article  CAS  Google Scholar 

  99. Liang Z J, Fadhel B, Schneider C J, Chaffee A L. Stepwise growth of melamine-based dendrimers into mesopores and their CO2 adsorption properties. Microporous and Mesoporous Materials, 2008, 111(1–3): 536–543

    Article  CAS  Google Scholar 

  100. Hicks J C, Drese J H, Fauth D J, Gray M L, Qi G G, Jones C W. Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly. Journal of the American Chemical Society, 2008, 130(10): 2902–2903

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubo Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Deng, S., Wei, H. et al. Activated carbons and amine-modified materials for carbon dioxide capture — a review. Front. Environ. Sci. Eng. 7, 326–340 (2013). https://doi.org/10.1007/s11783-013-0510-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-013-0510-7

Keywords

Navigation