Skip to main content

Advertisement

Log in

Dynamic relations for sparsely sampled Gaussian processes

  • Invited Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

In longitudinal studies, it is common to observe repeated measurements data from a sample of subjects where noisy measurements are made at irregular times, with a random number of measurements per subject. Often a reasonable assumption is that the data are generated by the trajectories of a smooth underlying stochastic process. In some cases, one observes multivariate time courses generated by a multivariate stochastic process. To understand the nature of the underlying processes, it is then of interest to relate the values of a process at one time with the value it assumes at another time, and also to relate the values assumed by different components of a multivariate trajectory at the same time or at specific times selected for each trajectory. In addition, an assessment of these relationships will allow to predict future values of an individual’s trajectories.

Derivatives of the trajectories are frequently more informative than the time courses themselves, for instance, in the case of growth curves. It is then of great interest to study the estimation of derivatives from sparse data. Such estimation procedures permit the study of time-dynamic relationships between derivatives and trajectory levels within the same trajectory and between the components of multivariate trajectories. Reviewing and extending recent work, we demonstrate the estimation of corresponding empirical dynamical systems and demonstrate asymptotic consistency of predictions and dynamic transfer functions. We illustrate the resulting prediction procedures and empirical first-order differential equations with a study of the dynamics of longitudinal functional data for the relationship of blood pressure and body mass index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ash RB, Gardner MF (1975) Topics in stochastic processes. Probability and mathematical statistics, vol 27. Academic Press [Harcourt Brace Jovanovich Publishers], New York

    MATH  Google Scholar 

  • Besse P, Ramsay JO (1986) Principal components analysis of sampled functions. Psychometrika 51:285–311

    Article  MATH  MathSciNet  Google Scholar 

  • Cai T, Hall P (2006) Prediction in functional linear regression. Ann Stat 34:2159–2179

    Article  MATH  MathSciNet  Google Scholar 

  • Cardot H, Ferraty F, Mas A, Sarda P (2003a) Testing hypotheses in the functional linear model. Scand J Stat 30:241–255

    Article  MATH  MathSciNet  Google Scholar 

  • Cardot H, Ferraty F, Sarda P (2003b) Spline estimators for the functional linear model. Stat Sin 13:571–591

    MATH  MathSciNet  Google Scholar 

  • Cardot H, Crambes C, Kneip A, Sarda P (2007) Smoothing splines estimators in functional linear regression with errors-in-variables. Comput Stat Data Anal 51:4832–4848

    Article  MATH  MathSciNet  Google Scholar 

  • Castro PE, Lawton WH, Sylvestre EA (1986) Principal modes of variation for processes with continuous sample curves. Technometrics 28:329–337

    Article  MATH  Google Scholar 

  • Chiang C-T, Rice JA, Wu CO (2001) Smoothing spline estimation for varying coefficient models with repeatedly measured dependent variables. J Am Stat Assoc 96:605–619

    Article  MATH  MathSciNet  Google Scholar 

  • Chiou J-M, Müller H-G, Wang J-L, Carey JR (2003) A functional multiplicative effects model for longitudinal data, with application to reproductive histories of female medflies. Stat Sin 13:1119–1133

    MATH  Google Scholar 

  • Chiou J-M, Müller H-G, Wang J-L (2004) Functional response models. Stat Sin 14:675–693

    MATH  Google Scholar 

  • Cuevas A, Febrero M, Fraiman R (2002) Linear functional regression: the case of fixed design and functional response. Can J Stat 30:285–300

    Article  MATH  MathSciNet  Google Scholar 

  • Dauxois J, Pousse A, Romain Y (1982) Asymptotic theory for the principal component analysis of a vector random function: some applications to statistical inference. J Multivar Anal 12:136–154

    Article  MATH  MathSciNet  Google Scholar 

  • Dubin JA, Müller H-G (2005) Dynamical correlation for multivariate longitudinal data. J Am Stat Assoc 100:872–881

    Article  MATH  Google Scholar 

  • Escabias M, Aguilera AM, Valderrama MJ (2004) Principal component estimation of functional logistic regression: discussion of two different approaches. J Nonparametr Stat 16:365–384

    Article  MATH  MathSciNet  Google Scholar 

  • Eubank RL, Hsing T (2008) Canonical correlation for stochastic processes. Stoch Proc Appl 118:1634–1661

    Article  MATH  MathSciNet  Google Scholar 

  • Fan J, Gijbels I (1996) Local polynomial modelling and its applications. Monographs on statistics and applied probability, vol. 66. Chapman & Hall, London

    MATH  Google Scholar 

  • Fan J, Zhang J-T (2000) Two-step estimation of functional linear models with applications to longitudinal data. J R Stat Soc, Ser B 62:303–322

    Article  MathSciNet  Google Scholar 

  • Fan J, Zhang W (2008) Statistical methods with varying coefficient models. Stat Interface 1:179–195

    MathSciNet  Google Scholar 

  • Faraway JJ (1997) Regression analysis for a functional response. Technometrics 39:254–261

    Article  MATH  MathSciNet  Google Scholar 

  • Ferraty F, Mas A, Vieu P (2007) Nonparametric regression on functional data: inference and practical aspects. Aust N Z J Stat 49:459–461

    Article  MathSciNet  Google Scholar 

  • Ferraty F, Vieu P (2006) Nonparametric functional data analysis. Springer, New York

    MATH  Google Scholar 

  • Gasser T, Kneip A (1995) Searching for structure in curve samples. J Am Stat Assoc 90:1179–1188

    Article  MATH  Google Scholar 

  • Gasser T, Müller H-G (1984) Estimating regression functions and their derivatives by the kernel method. Scand J Stat 11:171–185

    MATH  Google Scholar 

  • Gasser T, Müller H-G, Köhler W, Molinari L, Prader A (1984) Nonparametric regression analysis of growth curves. Ann Stat 12:210–229

    Article  MATH  Google Scholar 

  • Gervini D, Gasser T (2004) Self-modeling warping functions. J R Stat Soc, Ser B 66:959–971

    Article  MATH  MathSciNet  Google Scholar 

  • Gervini D, Gasser T (2005) Nonparametric maximum likelihood estimation of the structural mean of a sample of curves. Biometrika 92:801–820

    Article  MATH  MathSciNet  Google Scholar 

  • Grenander U (1950) Stochastic processes and statistical inference. Ark Mat 1:195–277

    Article  MATH  MathSciNet  Google Scholar 

  • Hall P, Horowitz JL (2007) Methodology and convergence rates for functional linear regression. Ann Stat 35:70–91

    Article  MATH  MathSciNet  Google Scholar 

  • Hall P, Müller H-G, Wang J-L (2006) Properties of principal component methods for functional and longitudinal data analysis. Ann Stat 34:1493–1517

    Article  MATH  Google Scholar 

  • Hall P, Müller H-G, Yao F (2008) Modeling sparse generalized longitudinal observations with latent Gaussian processes. J R Stat Soc, Ser B 70:730–723

    Google Scholar 

  • He G, Müller H-G, Wang J-L (2000) Extending correlation and regression from multivariate to functional data. In: Puri ML (ed) Asymptotics in statistics and probability. VSP International Science Publishers

  • He G, Müller H-G, Wang J-L (2003) Functional canonical analysis for square integrable stochastic processes. J Multivar Anal 85:54–77

    Article  MATH  Google Scholar 

  • He G, Müller H-G, Wang J-L (2004) Methods of canonical analysis for functional data. J Stat Plann Inference 122:141–159

    Article  MATH  Google Scholar 

  • Heckman NE, Zamar RH (2000) Comparing the shapes of regression functions. Biometrika 87:135–144

    Article  MATH  MathSciNet  Google Scholar 

  • Hoover DR, Rice JA, Wu CO, Yang L-P (1998) Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data. Biometrika 85:809–822

    Article  MATH  MathSciNet  Google Scholar 

  • Hotelling H (1936) Relations between two sets of variates. Biometrika 28:321–377

    MATH  Google Scholar 

  • Huang JZ, Wu CO, Zhou L (2004) Polynomial spline estimation and inference for varying coefficient models with longitudinal data. Stat Sin 14:763–788

    MATH  MathSciNet  Google Scholar 

  • James GM (2002) Generalized linear models with functional predictors. J R Stat Soc, Ser B 64:411–432

    Article  MATH  Google Scholar 

  • James GM, Hastie TJ, Sugar CA (2000) Principal component models for sparse functional data. Biometrika 87:587–602

    Article  MATH  MathSciNet  Google Scholar 

  • Jank W, Shmueli G (2006) Functional data analysis in electronic commerce research. Stat Sci 21:155–166

    Article  MATH  MathSciNet  Google Scholar 

  • Karhunen K (1946) Zur Spektraltheorie stochastischer Prozesse. Ann Acad Sci Fenn, Ser A, I, Math 1946:7

    MathSciNet  Google Scholar 

  • Kato T (1995) Perturbation theory for linear operators. Springer, Berlin

    MATH  Google Scholar 

  • Kirkpatrick M, Heckman N (1989) A quantitative genetic model for growth, shape, reaction norms, and other infinite-dimensional characters. J Math Biol 27:429–450

    Article  MATH  MathSciNet  Google Scholar 

  • Kneip A, Ramsay JO (2008) Combining registration and fitting for functional models. J Am Stat Assoc 103:1155–1165

    Article  Google Scholar 

  • Leurgans SE, Moyeed RA, Silverman BW (1993) Canonical correlation analysis when the data are curves. J R Stat Soc, Ser B 55:725–740

    MATH  MathSciNet  Google Scholar 

  • Lin X, Carroll RJ (2001a) Semiparametric regression for clustered data. Biometrika 88:1179–1185

    Article  MATH  MathSciNet  Google Scholar 

  • Lin X, Carroll RJ (2001b) Semiparametric regression for clustered data using generalized estimating equations. J Am Stat Assoc 96:1045–1056

    Article  MATH  MathSciNet  Google Scholar 

  • Liu B, Müller H-G (2009) Estimating derivatives for samples of sparsely observed functions, with application to on-line auction dynamics. J Am Stat Assoc 104:704–714

    Article  Google Scholar 

  • Malfait N, Ramsay JO (2003) The historical functional linear model. Can J Stat 31:115–128

    Article  MATH  MathSciNet  Google Scholar 

  • Mas A, Pumo B (2009) Functional linear regression with derivatives. J Nonparametr Stat 21:19–40

    Article  MATH  MathSciNet  Google Scholar 

  • Müller H-G (2005) Functional modelling and classification of longitudinal data. Scand J Stat 32:223–240

    Article  MATH  Google Scholar 

  • Müller H-G (2008) Functional modeling of longitudinal data. In: Fitzmaurice G, Davidian M, Verbeke G, Molenberghs G (eds) Longitudinal data analysis. Handbooks of modern statistical methods. Chapman & Hall/CRC, New York, pp 223–252

    Google Scholar 

  • Müller H-G, Stadtmüller U (2005) Generalized functional linear models. Ann Stat 33:774–805

    Article  MATH  Google Scholar 

  • Müller H-G, Yao F (2006) Regressing longitudinal response trajectories on a covariate. In: Fan J, Koul HL (eds) Frontiers in statistics. Festschrift for Peter Bickel Imperial College Press, London

    Google Scholar 

  • Müller H-G, Yao F (2008) Functional additive models. J Am Stat Assoc 103:1534–1544

    Article  Google Scholar 

  • Müller H-G, Zhang Y (2005) Time-varying functional regression for predicting remaining lifetime distributions from longitudinal trajectories. Biometrics 61:1064–1075

    Article  MATH  MathSciNet  Google Scholar 

  • Müller H-G, Chiou J-M, Leng X (2008) Inferring gene expression dynamics via functional regression analysis. BMC Bioinform 9:60

    Article  Google Scholar 

  • Opgen-Rhein R, Strimmer K (2006) Inferring gene dependency networks from genomic longitudinal data: a functional data approach. REVSTAT—Stat J 4:53–65

    MATH  MathSciNet  Google Scholar 

  • Pearson JD, Morrell CH, Brant LJ, Landis PK (1997) Gender differences in a longitudinal study of age associated changes in blood pressure. J Gerontol A Biol Sci Med Sci 52:177–183

    Google Scholar 

  • Qu A, Li R (2006) Quadratic inference functions for varying-coefficient models with longitudinal data. Biometrics 62:379–391

    Article  MATH  MathSciNet  Google Scholar 

  • Ramsay JO, Dalzell CJ (1991) Some tools for functional data analysis. J R Stat Soc, Ser B 53:539–572

    MATH  MathSciNet  Google Scholar 

  • Ramsay JO, Li X (1998) Curve registration. J R Stat Soc, Ser B 60:351–363

    Article  MATH  MathSciNet  Google Scholar 

  • Ramsay JO, Silverman BW (2002) Applied functional data analysis. Springer series in statistics. Springer, New York

    Book  MATH  Google Scholar 

  • Ramsay JO, Silverman BW (2005) Functional data analysis, 2nd edn. Springer series in statistics. Springer, New York

    Google Scholar 

  • Rao CR (1958) Some statistical methods for comparison of growth curves. Biometrics 14:1–17

    Article  MATH  Google Scholar 

  • Reddy SK, Dass M (2006) Modeling on-line art auction dynamics using functional data analysis. Stat Sci 21:179–193

    Article  MATH  MathSciNet  Google Scholar 

  • Rice JA (2004) Functional and longitudinal data analysis: perspectives on smoothing. Stat Sin 14:631–647

    MATH  MathSciNet  Google Scholar 

  • Rice JA, Silverman BW (1991) Estimating the mean and covariance structure nonparametrically when the data are curves. J R Stat Soc, Ser B 53:233–243

    MATH  MathSciNet  Google Scholar 

  • Rice JA, Wu CO (2001) Nonparametric mixed effects models for unequally sampled noisy curves. Biometrics 57:253–259

    Article  MathSciNet  Google Scholar 

  • Şentürk D, Müller H-G (2008) Generalized varying coefficient models for longitudinal data. Biometrika 95:653–666

    Article  MATH  Google Scholar 

  • Şentürk D, Müller H-G (2009) Functional varying coefficient models for longitudinal data. Preprint

  • Service SK, Rice JA, Chavez FP (1998) Relationship between physical and biological variables during the upwelling period in Monterey Bay. Deep-Sea Res, Part II, Top Stud Oceanogr 45:1669–1685

    Article  Google Scholar 

  • Shi M, Weiss RE, Taylor JMG (1996) An analysis of paediatric CD4 counts for acquired immune deficiency syndrome using flexible random curves. Ann Stat 45:151–163

    MATH  Google Scholar 

  • Shock NW, Greulich RC, Andres R, Lakatta EG, Arenberg D, Tobin JD (1984) Normal human aging: the Baltimore longitudinal study of aging. In: NIH publication no 84-2450. U.S. Government Printing Office, Washington, DC

  • Staniswalis JG, Lee JJ (1998) Nonparametric regression analysis of longitudinal data. J Am Stat Assoc 93:1403–1418

    Article  MATH  MathSciNet  Google Scholar 

  • Tang R, Müller H-G (2008) Pairwise curve synchronization for functional data. Biometrika 95:875–889

    Article  MATH  MathSciNet  Google Scholar 

  • Tang R, Müller H-G (2009) Time-synchronized clustering of gene expression trajectories. Biostatistics 10:32–45

    Article  Google Scholar 

  • Wang N, Carroll RJ, Lin X (2005) Efficient semiparametric marginal estimation for longitudinal/clustered data. J Am Stat Assoc 100:147–157

    Article  MATH  MathSciNet  Google Scholar 

  • Wang S, Jank W, Shmueli G, Smith P (2008) Modeling price dynamics in ebay auctions using principal differential analysis. J Am Stat Assoc 103(483):1100–1118

    Article  Google Scholar 

  • Wu CO, Yu KF, Chiang C-T (2000) A two-step smoothing method for varying-coefficient models with repeated measurements. Ann Inst Stat Math 52:519–543

    Article  MATH  MathSciNet  Google Scholar 

  • Yao F, Lee TCM (2006) Penalized spline models for functional principal component analysis. J R Stat Soc, Ser B 68:3–25

    Article  MATH  MathSciNet  Google Scholar 

  • Yao F, Müller H-G, Wang J-L (2005a) Functional data analysis for sparse longitudinal data. J Am Stat Assoc 100:577–590

    Article  MATH  Google Scholar 

  • Yao F, Müller H-G, Wang J-L (2005b) Functional linear regression analysis for longitudinal data. Ann Stat 33:2873–2903

    Article  MATH  Google Scholar 

  • Zhao X, Marron JS, Wells MT (2004) The functional data analysis view of longitudinal data. Stat Sin 14:789–808

    MATH  MathSciNet  Google Scholar 

  • Zhou L, Huang JZ, Carroll R (2008) Joint modelling of paired sparse functional data using principal components. Biometrika 95:601–619

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Georg Müller.

Additional information

This invited paper is discussed in the comments available at: doi:10.1007/s11749-009-0174-6, doi:10.1007/s11749-009-0175-5, doi:10.1007/s11749-009-0177-3, doi:10.1007/s11749-009-0178-2, doi:10.1007/s11749-009-0179-1, doi:10.1007/s11749-009-0180-8, doi:10.1007/s11749-009-0181-7, doi:10.1007/s11749-009-0182-6.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, HG., Yang, W. Dynamic relations for sparsely sampled Gaussian processes. TEST 19, 1–29 (2010). https://doi.org/10.1007/s11749-009-0176-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-009-0176-4

Mathematics Subject Classification (2000)

Navigation