Skip to main content
Log in

Protectin DX, a Double Lipoxygenase Product of DHA, Inhibits Both ROS Production in Human Neutrophils and Cyclooxygenase Activities

  • Original Article
  • Published:
Lipids

Abstract

Neutrophils play a major role in inflammation by releasing large amounts of reactive oxygen species (ROS) produced by NADPH oxidase (NOX) and myeloperoxidase (MPO). This ROS overproduction is mediated by phosphorylation of the NOX subunits in an uncontrolled manner. Therefore, targeting neutrophil subunits would represent a promising strategy to moderate NOX activity, lower ROS, and other inflammatory agents, such as cytokines and leukotrienes, produced by neutrophils. For this purpose, we investigated the effects of protectin DX (PDX)—a docosahexaenoic acid di-hydroxylated product which inhibits blood platelet aggregation—on neutrophil activation in vitro. We found that PDX decreases ROS production, inhibits NOX activation and MPO release from neutrophils. We also confirm, that PDX is an anti-aggregatory and anti-inflammatory agent by inhibiting both cyclooxygenase-1 and -2 (COX-1 and COX-2, E.C. 1.14.99.1) as well as COX-2 in lipopolysaccharides-treated human neutrophils. However, PDX has no effect on the 5-lipoxygenase pathway that produces the chemotactic agent leukotriene B4 (LTB4). Taken together, our results suggest that PDX could be a protective agent against neutrophil invasion in chronic inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ARA:

Arachidonic acid

BSTFA:

N,O-Bis(trimethylsilyl)-trifluoroacetamide

CLA:

Conjugated linoleic acid

ClnA:

Conjugated linolenic acid

COX:

Cyclooxygenase

DHA:

Docosahexaenoic acid

ECL:

Enhanced chemiluminescence

EPA:

Eicosapentaenoic acid

5-HETE:

5-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid

fMLF:

Formyl-methionyl-leucylphenylalanine

GM-CSF:

Granulocyte macrophage-colony stimulating factor

HBSS:

Hank’s balanced salt solution

HOCl:

Hypochloric acid

HRP:

Horseradish peroxidase

IBD:

Inflammatory bowel disease

IL:

Interleukin

LA:

Linoleic acid

LPS:

Lipopolysaccharides

LTB4 :

Leukotriene B4

MPO:

Myeloperoxidase

NOX:

NADPH oxidase

PAF:

Platelet-activating factor

PAGE:

Polyacrylamide gel electrophoresis

PBS:

Phosphate-buffered saline

PDX:

Protectin DX

PG:

Prostaglandin

Phox:

Phagocyte oxidase

PMA:

Phorbol myristate acetate

PMN:

Polymorphonuclear neutrophil

PUFA:

Polyunsaturated fatty acids

ROS:

Reactive oxygen species

RP-HPLC:

Reverse phase high performance liquid chromatography

sLOX:

Soybean lipoxygenase

TLC:

Thin-layer chromatography

TMB:

Tetramethyl benzidine

TNBS:

Trinitrobenzene sulfonic acid

TNF-α:

Tumor necrosis factor-α

References

  1. Mullenix PS, Andersen CA, Starnes BW (2005) Atherosclerosis as inflammation. Ann Vasc Surg 19:130–138

    Article  PubMed  Google Scholar 

  2. Fiocchi C (1998) Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology 115:182–205

    Article  CAS  PubMed  Google Scholar 

  3. Podolsky DK (2002) Inflammatory bowel disease. N Engl J Med 347:417–429

    Article  CAS  PubMed  Google Scholar 

  4. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444

    Article  CAS  PubMed  Google Scholar 

  5. Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO 3rd, Criqui M, Fadl YY, Fortmann SP, Hong Y, Myers GL, Rifai N, Smith SC Jr, Taubert K, Tracy RP, Vinicor F (2003) Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the centers for disease control and prevention and the American Heart Association. Circulation 107:499–511

    Article  PubMed  Google Scholar 

  6. Esposito K, Giugliano D (2004) The metabolic syndrome and inflammation: association or causation? Nutr Metab Cardiovasc Dis 14:228–232

    Article  CAS  PubMed  Google Scholar 

  7. Choy EH, Panayi GS (2001) Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med 344:907–916

    Article  CAS  PubMed  Google Scholar 

  8. Nathan C (2002) Points of control in inflammation. Nature 420:846–852

    Article  CAS  PubMed  Google Scholar 

  9. Santana Reyes C, García-Muñoz F, Reyes D, González G, Dominguez C, Domenech E (2003) Role of cytokines (interleukin-1beta, 6, 8, tumour necrosis factor-alpha, and soluble receptor of interleukin-2) and C-reactive protein in the diagnosis of neonatal sepsis. Acta Paediatr 92:221–227

    Article  CAS  PubMed  Google Scholar 

  10. Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD, Stanger BZ, Vonderheide RH (2012) Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21:822–835

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Ortega-Gómez A, Perretti M, Soehnlein O (2013) Resolution of inflammation: an integrated view. EMBO Mol Med 5:661–674

    Article  PubMed Central  PubMed  Google Scholar 

  12. Menshchikova E, Zenkov N, Tkachev V, Potapova O, Cherdantseva L, Shkurupiy V (2013) Oxidative stress and free-radical oxidation in BCG granulomatosis development. Oxid Med Cell Longev 2013:452546

    Article  PubMed Central  PubMed  Google Scholar 

  13. Klebanoff SJ (2005) Myeloperoxidase: friend and foe. J Leukoc Biol 77:598–625

    Article  CAS  PubMed  Google Scholar 

  14. Roos D, van Bruggen R, Meischl C (2003) Oxidative killing of microbes by neutrophils. Microbes Infect 5:1307–1315

    Article  CAS  PubMed  Google Scholar 

  15. Babior BM (1984) Oxidants from phagocytes: agents of defense and destruction. Blood 64:959–966

    CAS  PubMed  Google Scholar 

  16. Babior BM, Lambeth JD, Nauseef W (2002) The neutrophil NADPH oxidase. Arch Biochem Biophys 397:342–344

    Article  CAS  PubMed  Google Scholar 

  17. Sheppard FR, Kelher MR, Moore EE, McLaughlin NJ, Banerjee A, Silliman CC (2005) Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation. J Leukoc Biol 78:1025–1042

    Article  CAS  PubMed  Google Scholar 

  18. Whiting CV, Bland PW, Tarlton JF (2005) Dietary n-3 polyunsaturated fatty acids reduce disease and colonic proinflammatory cytokines in a mouse model of colitis. Inflamm Bowel Dis 11:340–349

    Article  PubMed  Google Scholar 

  19. Serhan CN (2006) Resolvins and protectins: novel lipid mediators in anti-inflammation and resolution. Scand J Food Nutr 50:68–78

    Article  Google Scholar 

  20. Kohli P, Levy BD (2009) Resolvins and protectins: mediating solutions to inflammation. Br J Pharmacol 158:960–971

    Article  CAS  PubMed  Google Scholar 

  21. Song HJ, Sneddon AA, Barker PA, Bestwick C, Choe SN, McClinton S, Grant I, Rotondo D, Heys SD, Wahle KW (2004) Conjugated linoleic acid inhibits proliferation and modulates protein kinase C isoforms in human prostate cancer cells. Nutr Cancer 49:100–108

    Article  CAS  PubMed  Google Scholar 

  22. Flowers M, Thompson PA (2009) t10c12 Conjugated linoleic acid suppresses HER2 protein and enhances apoptosis in SKBr 3 breast cancer cells: possible role of COX2. PLoS One 4:e5342. doi:10.1371/journalpone0005342

    Article  PubMed Central  PubMed  Google Scholar 

  23. Boussetta T, Raad H, Lettéron P, Gougerot-Pocidalo MA, Marie JC, Driss F, El-Benna J (2009) Punicic acid a conjugated linolenic acid inhibits TNFα-induced neutrophil hyperactivation and protects from experimental colon inflammation in rats. PLoS One 4:e6458. doi:10.1371/journalpone0006458

    Article  PubMed Central  PubMed  Google Scholar 

  24. Chen P, Véricel E, Lagarde M, Guichardant M (2011) Poxytrins, a class of oxygenated products from polyunsaturated fatty acids, potently inhibit blood platelet aggregation. FASEB J 25:382–388

    Article  PubMed  Google Scholar 

  25. Chen P, Fenet B, Michaud S, Tomczyk N, Véricel E, Lagarde M, Guichardant M (2009) Full characterization of PDX, a neuroprotectin/protectin D1 isomer, which inhibits blood platelet aggregation. FEBS Lett 583:3478–3484

    Article  CAS  PubMed  Google Scholar 

  26. Serhan CN, Gotlinger K, Hong S, Lu Y, Siegelman J, Baer T, Yang R, Colgan SP, Petasis NA (2006) Anti-inflammatory actions of neuroprotectin D1/protectin D1 and its natural stereoisomers: assignments of dihydroxy-containing docosatrienes. J Immunol 176:1848–1859

    CAS  PubMed  Google Scholar 

  27. Morita M, Kuba K, Ichikawa A, Nakayama M, Katahira J, Iwamoto R, Watanebe T, Sakabe S, Daidoji T, Nakamura S, Kadowaki A, Ohto T, Nakanishi H, Taguchi R, Nakaya T, Murakami M, Yoneda Y, Arai H, Kawaoka Y, Penninger JM, Arita M, Imai Y (2013) The lipid mediator protectin D1 inhibits influenza virus replication and improves severe influenza. Cell 153:112–125

    Article  CAS  PubMed  Google Scholar 

  28. Dang PM, Stensballe A, Boussetta T, Raad H, Dewas C, Kroviarski Y, Hayem G, Jensen ON, Gougerot-Pocidalo MA, El-Benna J (2006) A specific p47phox -serine phosphorylated by convergent MAPKs mediates neutrophil NADPH oxidase priming at inflammatory sites. J Clin Invest 116:2033–2043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  30. Watanabe T, Narumiya S, Shimizu T, Hayaishi O (1982) Characterization of the biosynthetic pathway of prostaglandin D2 in human platelet-rich plasma. J Biol Chem 257:14847–14853

    CAS  PubMed  Google Scholar 

  31. Klebanoff SJ (1999) Myeloperoxidase. Proc Assoc Am Physicians 111:383–389

    CAS  PubMed  Google Scholar 

  32. Winterbourn CC, Kettle AJ (2000) Biomarkers of myeloperoxidase-derived hypochlorous acid. Free Radic Biol Med 29:403–409

    Article  CAS  PubMed  Google Scholar 

  33. Stamp LK, Khalilova I, Tarr JM, Senthilmohan R, Turner R, Haigh RC, Winyard PG, Kettle AJ (2012) Myeloperoxidase and oxidative stress in rheumatoid arthritis. Rheumatology (Oxford) 51:1796–1803

    Article  CAS  Google Scholar 

  34. Papadakis KA, Targan SR (2000) Tumor necrosis factor: biology and therapeutic inhibitors. Gastroenterology 119:1148–1157

    Article  CAS  PubMed  Google Scholar 

  35. Dewas C, Dang PM, Gougerot-Pocidalo MA, El-Benna J (2003) TNF-alpha induces phosphorylation of p47 (phox) in human neutrophils: partial phosphorylation of p47phox is a common event of priming of human neutrophils by TNF-alpha and granulocyte-macrophage colony-stimulating factor. J Immunol 171:4392–4398

    CAS  PubMed  Google Scholar 

  36. El-Benna J, Dang PM, Gougerot-Pocidalo MA (2008) Priming of the neutrophil NADPH oxidase activation: role of p47phox phosphorylation and NOX2 mobilization to the plasma membrane. Semin Immunopathol 30:279–289

    Article  CAS  PubMed  Google Scholar 

  37. Larmonier CB, Midura-Kiela MT, Ramalingam R, Laubitz D, Janikashvili N, Larmonier N, Ghishan FK, Kiela PR (2011) Modulation of neutrophil motility by curcumin: implications for inflammatory bowel disease. Inflamm Bowel Dis 17:503–515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Zock PL, Katan MB (1998) Linoleic acid intake and cancer risk: a review and meta-analysis. Am J Clin Nutr 68:142–153

    CAS  PubMed  Google Scholar 

  39. Hatanaka E, Levada-Pires AC, Pithon-Curi TC, Curi R (2006) Systematic study on ROS production induced by oleic, linoleic, and gamma-linolenic acids in human and rat neutrophils. Free Radic Biol Med 41:1124–113239

    Article  CAS  PubMed  Google Scholar 

  40. Martins de Lima-Salgado T, Coccuzzo Sampaio S, Cury-Boaventura MF, Curi R (2011) Modulatory effect of fatty acids on fungicidal activity, respiratory burst and TNF-α and IL-6 production in J774 murine macrophages. Br J Nutr 105:1173–1179

    Article  PubMed  Google Scholar 

  41. Wanten GJ, Janssen FP, Naber AH (2002) Saturated triglycerides and fatty acids activate neutrophils depending on carbon chain-length. Eur J Clin Invest 32:285–289

    Article  CAS  PubMed  Google Scholar 

  42. Lewis RA, Austen KF, Soberman RJ (1990) Leukotrienes and other products of the 5-lipoxygenase pathway. Biochemistry and relation to pathobiology in human diseases. N Engl J Med 323:645–655

    Article  CAS  PubMed  Google Scholar 

  43. Sakai M, Kakutani S, Horikawa C, Tokuda H, Kawashima H, Shibata H, Okubo H, Sasaki S (2012) Arachidonic acid and cancer risk: a systematic review of observational studies. BMC Cancer 12:606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Harbige LS (2003) Fatty acids, the immune response, and autoimmunity: a question of n-6 essentiality and the balance between n-6 and n-3. Lipids 38:323–341

    Article  CAS  PubMed  Google Scholar 

  45. Siriwardhana N, Kalupahana NS, Moustaid-Moussa N (2012) Health benefits of n-3 polyunsaturated fatty acids: eicosapentaenoic acid and docosahexaenoic acid. Adv Food Nutr Res 65:211–222

    PubMed  Google Scholar 

  46. Hardy SJ, Robinson BS, Poulos A, Harvey DP, Ferrante A, Murray AW (1994) The neutrophil respiratory burst. Responses to fatty acids, N-formylmethionylleucylphenylalanine and phorbol ester suggest divergent signalling mechanisms. Eur J Biochem 198:801–806

    Article  Google Scholar 

  47. Paschoal VA, Vinolo MA, Crisma AR, Magdalon J, Curi R (2013) Eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid differentially modulate rat neutrophil function in vitro. Lipids 48:93–103

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Inserm and the French Ministry of Education and Research. Miao Liu was received a grant from the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Guichardant.

Additional information

M. Liu, T. Boussetta, K. Makni-Maalej contributed equally to this work.

About this article

Cite this article

Liu, M., Boussetta, T., Makni-Maalej, K. et al. Protectin DX, a Double Lipoxygenase Product of DHA, Inhibits Both ROS Production in Human Neutrophils and Cyclooxygenase Activities. Lipids 49, 49–57 (2014). https://doi.org/10.1007/s11745-013-3863-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-013-3863-6

Keywords

Navigation