Skip to main content
Log in

Inhibitory Effect of Conjugated α-Linolenic Acid from Bifidobacteria of Intestinal Origin on SW480 Cancer Cells

  • Original Article
  • Published:
Lipids

Abstract

In this study, we assessed the ability of six strains of bifidobacteria (previously shown by us to possess the ability to convert linoleic acid to c9, t11-conjugated linoleic acid (CLA) to grow in the presence of α-linolenic acid and to generate conjugated isomers of the fatty acid substrate during fermentation for 42 h. The six strains of bifidobacteria were grown in modified MRS (mMRS) containing α-linolenic acid for 42 h at 37 °C, after which the fatty acid composition of the growth medium was assessed by gas liquid chromatography (GLC). Indeed, following fermentation of one of the strains, namely Bifidobacterium breve NCIMB 702258, in the presence of 0.41 mg/ml α-linolenic acid, 79.1% was converted to the conjugated isomer, C18:3 c9, t11, c15 conjugated α-linolenic acid (CALA). To examine the inhibitory effect of the fermented oils produced, SW480 colon cancer cells were cultured in the presence of the extracted fermented oil (10–50 μg/ml) for 5 days. The data indicate an inhibitory effect on cell growth (p ≤ 0.001) of CALA, with cell numbers reduced by 85% at a concentration of 180 μM, compared with a reduction of only 50% with α-linolenic acid (p ≤ 0.01).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dupertuis YM, Meguid MM, Pichard C (2007) Colon cancer therapy: new perspectives of nutritional manipulations using polyunsaturated fatty acids. Curr Opin Clin Nutr Metab Care 10:427–432

    Article  PubMed  CAS  Google Scholar 

  2. Larsson SC, Kumlin M, Ingelman-Sundberg M, Wolk A (2004) Dietary long-chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms. Am J Clin Nutr 79:935–945

    PubMed  CAS  Google Scholar 

  3. Destaillats F, Trottier JP, Galvez JM, Angers P (2005) Analysis of alpha-linolenic acid biohydrogenation intermediates in milk fat with emphasis on conjugated linolenic acids. J Dairy Sci 88:3231–3239

    Article  PubMed  CAS  Google Scholar 

  4. Miller A, Stanton C, Murphy J, Devery R (2003) Conjugated linoleic acid (CLA)-enriched milk fat inhibits growth and modulates CLA-responsive biomarkers in MCF-7 and SW480 human cancer cell lines. Br J Nutr 90:877–885

    Article  PubMed  CAS  Google Scholar 

  5. Bhattacharya A, Banu J, Rahman M, Causey J, Fernandes G (2006) Biological effects of conjugated linoleic acids in health and disease. J Nutr Biochem 17:789–810

    Article  PubMed  CAS  Google Scholar 

  6. Ip C, Dong Y, Ip MM, Banni S, Carta G, Angioni G, Murru E, Spada S, Melis MP, Saebo A (2002) Conjugated linoleic acid isomers and mammary cancer prevention. Nutr Cancer 43:52–58

    Article  PubMed  CAS  Google Scholar 

  7. Belury MA (2002) Inhibition of carcinogenesis by conjugated linoleic acid: potential mechanisms of action. J Nutr 132:2995–2998

    PubMed  CAS  Google Scholar 

  8. Wang YW, Jones PJ (2004) Conjugated linoleic acid and obesity control: efficacy and mechanisms. Int J Obes Relat Metab Disord 28:941–955

    Article  PubMed  CAS  Google Scholar 

  9. Terpstra AHM (2004) Effect of conjugated linoleic acid on body composition and plasma lipids in humans. Amer J Clin Nutr 79:352–361

    PubMed  CAS  Google Scholar 

  10. Kritchevsky D, Tepper SA, Wright S, Tso P, Czarnecki SK (2000) Influence of conjugated linoleic acid (CLA) on establishment and progression of atherosclerosis in rabbits. J Am Coll Nutr 19:472S–477S

    PubMed  CAS  Google Scholar 

  11. Nicolosi RJ, Rogers EJ, Kritchevsky D, Scimeca JA, Huth PJ (1997) Dietary conjugated linoleic acid reduces plasma lipoproteins and early aortic atherosclerosis in hypercholesterolemic hamsters. Artery 22:266–277

    PubMed  CAS  Google Scholar 

  12. Nagao K, Yanagita T (2005) Conjugated fatty acids in food and their health benefits. J Biosci Bioeng 100:152–157

    Article  PubMed  CAS  Google Scholar 

  13. Yasui Y, Hosokawa M, Kohno H, Tanaka T, Myashita K (2006) Growth inhibition and apoptosis induction by all-trans-conjugated linolenic acids on human colon cancer cells. Anticancer Res 26:1855–1860

    PubMed  CAS  Google Scholar 

  14. Yasui Y, Hosokawa M, Sahara T, Suzuki R, Ohgiya S, Kohno H, Tanaka T, Miyashita K (2005) Bitter gourd seed fatty acid rich in 9c, 11t, 13t-conjugated linolenic acid induces apoptosis and up-regulates the GADD45, p53 and PPARγ in human colon cancer Caco-2 cells. Prostaglandins Leukot Essent Fatty Acids 73:113–119

    Article  PubMed  CAS  Google Scholar 

  15. Tsuzuki T, Tokuyama Y, Igarashi M, Miyazawa T (2004) Tumor growth suppression by α-eleostearic acid, a linolenic acid isomer with a conjugated triene system, via lipid peroxidation. Carcinogenesis 25:1417–1425

    Article  PubMed  CAS  Google Scholar 

  16. Yasui Y, Hosokawa M, Kohno H, Tanaka T, Miyashita K (2006) Troglitazone and 9cis, 11trans, 13trans-conjugated linolenic acid: comparison of their antiproliferative and apoptosis-inducing effects on different colon cancer cell lines. Chemotherapy 52:220–225

    Article  PubMed  CAS  Google Scholar 

  17. Arao K, Yotsumoto H, Han SY, Nagao K, Yanagita T (2004) The 9cis, 11trans, 13cis isomer of conjugated linolenic acid reduces apoliprotein B100 secretion and triacylglycerol synthesis in HepG2 cells. Biosci Biotechnol Biochem 68:2643–2645

    Article  PubMed  CAS  Google Scholar 

  18. Futakuchi M, Cheng JL, Hirose M, Kimoto N, Cho YM, Iwata T, Kasai M, Tokudome S, Shirai T (2002) Inhibition of conjugated fatty acids derived from safflower or perilla oil of induction and development of mammary tumors in rats induced by 2-amino-1-methyl-6-phenylimidazo[4, 5-b]pyridine (PhIP). Cancer Lett 178:131–139

    Article  PubMed  CAS  Google Scholar 

  19. Coakley M, Ross RP, Nordgren M, Fitzgerald G, Devery R, Stanton C (2003) Conjugated linoleic acid biosynthesis by human-derived Bifidobacterium species. J Appl Microbiol 94:138–145

    Article  PubMed  CAS  Google Scholar 

  20. Coakley M, Johnson MC, McGrath E, Rahman S, Ross RP, Fitzgerald GF, Devery R, Stanton C (2006) Intestinal bifidobacteria that produce trans-9, trans-11 CLA: a fatty acid with anti-proliferative activity against human colon SW480 and HT-29 cancer cells. Nutr Cancer 56:95–102

    Article  PubMed  CAS  Google Scholar 

  21. Rosberg-Cody E, Ross RP, Hussey S, Ryan CA, Murphy BP, Fitzgerald GF, Devery R, Stanton C (2004) Mining the microbiota of the neonatal gastrointestinal tract for conjugated linoleic acid-producing bifidobacteria. Appl Environ Microbiol 70:4635–4641

    Article  PubMed  CAS  Google Scholar 

  22. Melis MP, Angioni E, Carta G, Murru E, Scannu P, Spada S, Banni S (2001) Characterisation of conjugated linoleic acid and its metabolites by RP-HPLC with diode array detector. Eur J Lipid Sci Technol 103:617–621

    Article  CAS  Google Scholar 

  23. Banni S, Day BW, Evans RW, Corongiu FP, Lombardi B (1995) Detection of conjugated diene fatty acid isomers in liver lipids of rats fed a choline devoid diet indicates that the diet does not cause lipid peroxidation. J Nutr Biochem 6:281–289

    Article  CAS  Google Scholar 

  24. Barrett E, Ross RP, Fitzgerald GF, Stanton C (2007) Rapid screening method for analyzing the conjugated linoleic acid production capabilities of bacterial cultures. Appl Environ Microbiol 73:2333–2337

    Article  PubMed  CAS  Google Scholar 

  25. Angioni E, Lercker G, Frega NG, Carta G, Melis MP, Murru E, Spada S, Banni S (2002) UV spectral properties of lipids as a tool for their identification. Eur J Lipid Sci Technol 104:59–64

    Article  CAS  Google Scholar 

  26. Fritsche JRR, Steinhart H (1999) Formation, contents and estimation of daily intake of conjugated linoleic acid isomers and trans-fatty acids in foods. Adv Conjugated Linoleic Acid Res 1:378–396

    CAS  Google Scholar 

  27. Leahy S, Higgins D, Fitzgerald GF, van Sinderen D (2005) Getting better with bifidobacteria. J Appl Microbiol 98:1303–1315

    Article  PubMed  CAS  Google Scholar 

  28. Picard C, Fioramonti J, Francois A, Robinson T, Neant F, Matuchansky C (2005) Review article: bifidobacteria as probiotic agents—physiological effects and clinical benefits. Aliment Pharmacol Ther 22:495–512

    Article  PubMed  CAS  Google Scholar 

  29. Suzuki R, Yasui Y, Kohno H, Miyamoto S, Hosokawa M, Miyashita K, Tanaka T (2006) Catalpa seed oil rich in 9t, 11t, 13c-conjugated linolenic acid suppresses the development of colonic aberrant crypt foci induced by azoxymethane in rats. Oncol Rep 16:989–996

    PubMed  CAS  Google Scholar 

  30. Chuang C-Y, Hsu C, Chao C, Wein Y-S, Kuo Y-H, Huang C (2006) Fractionation and identification of 9c, 11t, 13t-conjugated linolenic acid as an activator of PPARα in bitter gourd (Momordica charantia L.). J Biomed Sci 13:763–772

    Article  PubMed  CAS  Google Scholar 

  31. Ogawa J, Kishino S, Ando A, Sugimoto S, Mihara K, Shimizu S (2005) Production of conjugated fatty acids by lactic acid bacteria. J Biosc Bioeng 100:355–364

    Article  CAS  Google Scholar 

  32. Vonk RJ, Kalivianakis M, Minich DM, Biijleveld CM, Verade HJ (1997) The metabolic importance of unabsorbed dietary lipids in the colon. Scand J Gastroenterol 222:65–67

    CAS  Google Scholar 

  33. Hill MJ (1998) Composition and control of ileal contents. Eur J Cancer Prev 7:S75–S78

    Article  PubMed  Google Scholar 

  34. Plourde M, Destaillats F, Chouinard PY, Angers P (2007) Conjugated alpha-linolenic acid isomers in bovine milk and muscle. J Dairy Sci 90:5269–5275

    Article  PubMed  CAS  Google Scholar 

  35. Rise P, Eligini S, Ghezzi S, Colli S, Galli C (2007) Fatty acid composition of plasma, blood cells and whole blood: relevance for the assessment of the fatty acid status in humans. Prostaglandins Leukot Essent Fatty Acids 76:363–369

    Article  PubMed  CAS  Google Scholar 

  36. Biavati B, Vescovo M, Torriani S, Bottazzi V (2000) Bifidobacteria: history, ecology, physiology and applications. Ann Microbiol 50:117–131

    Google Scholar 

  37. Matsuki T, Watanabe K, Tanaka R (2003) Genus- and species-specific PCR primers for the detection and identification of bifidobacteria. Curr Issues Intest Microbiol 4:61–69

    PubMed  CAS  Google Scholar 

  38. Gueimonde M, Debor L, Tolkko S, Jokisalo E, Salminen S (2007) Quantitative assessment of faecal bifidobacterial populations by real-time PCR using lanthanide probes. J Appl Microbiol 102:1116–1122

    PubMed  CAS  Google Scholar 

  39. Barrett E, Ross RP, Fitzgerald GF, Stanton C (2007) Rapid screening method for analyzing the conjugated linoleic acid production capabilities of bacterial cultures. Appl Environ Microbiol 73:2333–2337

    Article  PubMed  CAS  Google Scholar 

  40. Dinoto A, Marques TM, Sakamoto K, Fukiya S, Watanabe J, Ito S, Yokota A (2006) Population dynamics of Bifidobacterium species in human feces during raffinose administration monitored by fluorescence in situ hybridization-flow cytometry. Appl Environ Microbiol 72:7739–7747

    Article  PubMed  CAS  Google Scholar 

  41. Kelley NS, Hubbard NE, Erickson KL (2007) Conjugated linoleic acid isomers and cancer. J Nutr 137:2599–2607

    PubMed  CAS  Google Scholar 

  42. Esterbauer H (1993) Cytotoxicity and genotoxicity of lipid oxidation products. Am J Clin Nutr 57:779S–786S

    PubMed  CAS  Google Scholar 

  43. Sandstorm PA, Tebbey PW, Van Cleave S, Buttke TM (1994) Lipid hydroperoxides induce apoptosis in T cells displaying a HIV-associated glutathione peroxidase deficiency. J Biol Chem 269:798–801

    Google Scholar 

  44. Aoshima H, Satoh T, Sakai N, Yamada M, Enokiko Y, Ikeuchi T, Hatanaka H (1997) Generation of free radicals during lipid hydroperoxide-triggered apoptosis in PC12 h cells. Biochim Biophys Acta 1345:35–42

    PubMed  CAS  Google Scholar 

  45. Ji C, Rouzer CA, Marnett LJ, Pietenpol JA (1998) Induction of cell cycle arrest by the endogenous product of lipid peroxidation, malondialdehyde. Carcinogenesis 19:1275–1283

    Article  PubMed  CAS  Google Scholar 

  46. Gupta RA, Dubois RN (2002) PPARγ as a target for treatment of colorectal cancer. Am J Physiol 283:G266–G269

    CAS  Google Scholar 

  47. Sporn MB, Suh N, Mangelsdorf DJ (2001) Prospects for prevention and treatment of cancer with selective PPARγ modulators (SPARMS). Trends Mol Med 7:395–400

    Article  PubMed  CAS  Google Scholar 

  48. Tsuzuki T, Kawakami Y, Abe R, Nakagawa K, Koba K, Imamura J, Iwata T, Ikeda I, Miyazawa T (2006) Conjugated linolenic acid is slowly absorbed in rat intestine, but quickly converted to conjugated linoleic acid. J Nutr 136:2153–2159

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The technical assistance of Seamus Aherne is gratefully acknowledged. This work was funded by SFI funds, and in part by the Irish Government under the National Development Plan 2000–2006 and by EU Project QLK1-2002-02362.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Stanton.

About this article

Cite this article

Coakley, M., Banni, S., Johnson, M.C. et al. Inhibitory Effect of Conjugated α-Linolenic Acid from Bifidobacteria of Intestinal Origin on SW480 Cancer Cells. Lipids 44, 249–256 (2009). https://doi.org/10.1007/s11745-008-3269-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-008-3269-z

Keywords

Navigation