Skip to main content
Log in

GC-MS structural characterization of fatty acids from marine aerobic anoxygenic phototrophic bacteria

  • Published:
Lipids

Abstract

The FA composition of 12 strains of marine aerobic anoxygenic phototrophic bacteria belonging to the genera Erythrobacter, Roseobacter, and Citromicrobium was investigated. GC-MS analyses of different types of derivatives were performed to determine the structures of the main FA present in these organisms. All the analyzed strains contained the relatively rare 11-methyloctadec-12-enoic acid, and three contained 12-methyl-octadec-11-enoic acid, which has apparently never been reported before. High amounts of the very unusual octadeca-5,11-dienoic acid were present in 9 of the 12 strains analyzed. A FA containing a furan ring was detected in three strains. Analytical data indicated that this FA was 10,13-epoxy-11-methyloctadeca-10,12-dienoic acid. A very interesting enzymatic peroxidation of the allylic carbon 10 of cis-vaccenic acid was observed in three strains. Deuterium labeling and GC-MS analyses enabled us to demonstrate that this enzymatic process involves the initial dioxygenase-mediated formation of 10-hydroperoxyoctadec-11(cis)-enoic acid, which is then isomerized to 10-hydroperoxyoctadec-11(trans)-enoic acid and converted to the corresponding hydroxy-acids and oxoacids. Different biosynthetic pathways were proposed for these different compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AAP:

aerobic anoxygenic phototrophs

Bchl:

bacteriochlorophyll

BSTFA:

bis(trimethylsily)trifluoroacetamide

References

  1. Sato, K. (1978) Bacteriochlorophyll Formation by Facultative Methylotrophs, Protaminobacter rubber and Pseudomonas AM1, FEBS Lett. 85, 207–210.

    Article  PubMed  CAS  Google Scholar 

  2. Harashima, K., Shiba, T., Totsuka, T., Shimidu, U., and Taga, N. (1978) Occurrence of Bacteriochlorophyll-a in a Strain of an Aerobic Heterotrophic Bacterium, Agric. Biol. Chem. 42, 1627–1628.

    CAS  Google Scholar 

  3. Shimada, K. (1995) Aerobic Anoxygenic Phototrophs, in Anoxygenic Photosynthetic Bacteria (Blankenship, R.E., Madigan, M.T., and Bauer, C.E., eds.), p. 105–122, Kluwer Academic, Dordrecht, The Netherlands.

    Google Scholar 

  4. Yurkov, V.V., and Beatty, J.T. (1998) Aerobic Anoxygenic Phototrophic Bacteria, Microbiol. Mol. Biol. Rev. 62, 695–724.

    PubMed  CAS  Google Scholar 

  5. Shiba, T., Simidu, U., and Taga, N. (1979) Distribution of Aerobic Bacteria Which Contain Bacteriochlorophyll-a, Appl. Environ. Microbiol. 38, 43–45.

    PubMed  CAS  Google Scholar 

  6. Shiba, T. (1991) Roseobacter litoralis gen. nov., sp. nov. and Roseobacter denitrificans sp. nov., Aerobic Pink-Pigmented Bacteria Which Contain Bacteriochlorophyll-a, Syst. Appl. Microbiol. 14, 140–145.

    Google Scholar 

  7. Kolber, Z.S., Van Dover, C.L., Niederman, R.A., and Falkowski, P.G. (2000) Bacterial Photosynthesis in Surface Waters of the Open Ocean, Nature 407, 177–179.

    Article  PubMed  CAS  Google Scholar 

  8. Kolber, Z.S., Plumley, F.G., Lang, A.S., Beatty, J.T., Blankenship, R.E., VanDover, C.L., Vetriani, C., Koblizek, M., Rathgeber, C., and Falkowski, P.G. (2001) Contribution of Aerobic Photoheterotrophic Bacteria to the Carbon Cycle in the Ocean, Science 292, 2492–2495.

    Article  PubMed  CAS  Google Scholar 

  9. Goericke, R. (2002) Bacteriochlorophyll-a in the Ocean: Is Anoxygenic Bacterial Photosynthesis Important? Limnol. Oceanogr. 47, 290–295.

    Article  CAS  Google Scholar 

  10. Koblízek, M., Falkowski, P.G., and Kolber, Z.S. (2005) Diversity and Distribution of Photosynthetic Bacteria in the Black Sea, Deep Sea Res. II, in press.

  11. Koblízek, M., Ston-Egiert, J., Sagan, S., and Kolber, Z. (2004) Diel Changes in Bacteriochlorophyll-a Concentration Suggest Rapid Bacterioplankton Cycling in the Baltic Sea, FEMS Microbiol Ecol. 51, 353–361.

    PubMed  Google Scholar 

  12. Shiba, T., and Simidu, U. (1982) Erythrobacter longus gen. nov., sp. nov., an Aerobic Bacterium Which Contains Bacteriochlorophyll-a, Int. J. Syst. Bacteriol. 32, 211–217.

    Article  Google Scholar 

  13. Nishimura, Y., Muroga, Y., Saito, S., Shiba, T., Takamiya, K., and Shioi, Y. (1994) DNA Relatedness and Chemotaxonomic Feature of Aerobic Bacteriochlorophyll-Containing Bacteria Isolated from Coasts of Australia, J. Gen. Appl. Microbiol. 40, 287–296.

    CAS  Google Scholar 

  14. Suzuki, T., Muroga, Y., Takahama, M., and Nishimura, Y. (2000) Roseibium denhamense gen. nov., sp. nov. and Roseibium hamelinense sp. nov., Aerobic Bacteriochlorophyll-Containing Bacteria Isolated from the East and West Coasts of Australia, Int. J. Syst. Bacteriol. 50, 2151–2156.

    Google Scholar 

  15. Koblizek, M., Béjà, O., Bidigare, R.R., Christensen, S., Benetiz-Nelson, B., Vetriani, C., Kolber, M.K., and Falkowski, P.G. (2003) Isolation and Characterization of Erythrobacter sp. Strains from the Upper Ocean, Arch. Microbiol. 180, 327–338.

    Article  PubMed  CAS  Google Scholar 

  16. Volkman, J.K., Farmer, C.L., Barrett, S.M., and Sikes, E.L. (1997) Unusual Dihydroxysterols as Chemotaxonomic Markers for Microalgae from the Order Pavlovales (Haptophyceae), J. Phycol. 33, 1016–1023.

    Article  CAS  Google Scholar 

  17. Marchand, D., and Rontani, J.-F. (2003) Visible Light-Induced Oxidation of Lipid Components of Purple Sulphur Bacteria: A Significant Process in Microbial Mats, Org. Geochem. 34, 61–79.

    Article  CAS  Google Scholar 

  18. Mihara, S., and Tateba, H. (1986) Photosensitized Oxygenation Reactions of Phytol and Its Derivatives, J. Org. Chem. 51, 1142–1144.

    Article  CAS  Google Scholar 

  19. Harwood, J.L., and Russell, N.L. (1984) Lipids in Plants and Microbes, pp. 1–162, Allen & Unwin, London.

    Google Scholar 

  20. Wilkinson, S.G. (1988) Gram-Negative Bacteria, in Microbial Lipids (Ratledge, C., and Wilkinson, S.G., eds.), pp. 299–488, Alden Press, London.

    Google Scholar 

  21. Rontani, J.-F., and Aubert, C. (2003) Electron Ionization Mass Spectral Fragmentation of C19 Isoprenoid Aldehydes and Carboxylic Acid Methyl and Trimethylsilyl Esters, Rapid Commun. Mass Spectrom. 17, 949–956.

    Article  PubMed  CAS  Google Scholar 

  22. McCloskey, J.A., and McClelland, M.J. (1965) Mass Spectra of O-Isopropylidene Derivatives of Unsaturated Fatty Esters, J. Am. Chem. Soc. 87, 5090–5093.

    Article  CAS  Google Scholar 

  23. Andersson, B.A., Christie, W.W., and Holman, R.T. (1974) Mass Spectrometric Determination of Positions of Double Bonds in Polyunsaturated Fatty Acid Pyrrolidides, Lipids 10, 215–219.

    Google Scholar 

  24. Capella, P., and Zorzut, C.M. (1968) Determination of Double Bond Position in Monounsaturated Fatty Acid Esters by Mass Spectrometry of Their Trimethylsilyloxy Derivatives, Anal. Chem. 40, 1458–1463.

    Article  CAS  Google Scholar 

  25. de Leeuw, J.W., van der Meer, J.W., Rijpstra, W.I.C., and Schenck, P.A. (1980) On the Occurrence and Structural Identification of Long Chain Ketones and Hydrocarbons in Sediments, in Advances in Organic Geochemistry 1979 (Douglas, A.G., and Maxwell, J.R., eds.), pp. 211–217, Pergamon Press, Oxford.

    Google Scholar 

  26. Andersson, B.A., and Holman, R.T. (1975) Mass Spectrometric Localization of Methyl Branching in Fatty Acids Using Acylpyrrolidines, Lipids 10, 716–718.

    PubMed  CAS  Google Scholar 

  27. Couderc, F. (1995) Gas Chromatography/Tandem Mass Spectrometry as an Analytical Tool for the Identification of Fatty Acids, Lipids 30, 691–699.

    PubMed  CAS  Google Scholar 

  28. Shirasaka, N., Nishi, K., and Shimizu, S. (1997) Biosynthesis of Furan Fatty Acids (F-acids) by a Marine Bacterium, Shewanella putrefaciens, Biochim. Biophys. Acta 1346, 253–260.

    PubMed  CAS  Google Scholar 

  29. Kerger, B.D., Nichols, P.D., Antworth, C.P., Sand, W., Bock, E., Cox, J.C., Langworthy, T.A., and White, D.C. (1986) Signature Fatty Acids in the Polar Lipids of Acid-Producing Thiobacillus spp.: Methoxy, Cyclopropyl α-Hydroxy-Cyclopropyl and Branched and Normal Monoenoic Fatty Acids, FEMS Microbiol. Ecol 38, 67–77.

    Article  CAS  Google Scholar 

  30. Wolff, R.L., Christie, W.W., and Marpeau, A.M. (1999) Reinvestigation of the Polymethylene-Interrupted 18∶2 and 20∶2 Acids of Ginkgo biloba Seed Lipids, J. Oil Am. Chem. Soc. 76, 273–277.

    CAS  Google Scholar 

  31. Volkman, J.K., Jeffrey, S.W.J., Nichols, P.D., Rogers, G.I., and Garland, C.D. (1989) Fatty Acid and Lipid Composition of 10 Species of Microalgae Used in Mariculture, J. Exp. Mar. Biol. Ecol. 128, 219–240.

    Article  CAS  Google Scholar 

  32. Viso, A.-C., and Marty, J.-C. (1993) Fatty Acids from 28 Marine Microalgae, Phytochemistry 34, 1521–1533.

    Article  CAS  Google Scholar 

  33. Volkman, J.K., Barrett, S.M., Blackburn, S.I., Mansour, M.P., Sikes, E.L., and Gelin, F. (1998) Microalgal Biomarkers: A Review of Recent Research Developments, Org. Geochem. 29, 1163–1179.

    Article  CAS  Google Scholar 

  34. Reuss, N., and Poulsen, L.K. (2002) Evaluation of Fatty Acids as Biomarkers for a Natural Plankton Community. A Field Study of a Spring Bloom and a Post-bloom Period of West Greenland, Mar. Biol. 141, 423–434.

    Article  CAS  Google Scholar 

  35. Imhoff, J.F., and Bias-Imhoff, U. (1995) Lipids, Quinones and Fatty Acids of Anoxygenic Phototrophic Bacteria, in Anoxygenic Photosynthetic Bacteria (Blankenship, R.E., Madigan, M.T. and Bauer, C.E., eds.), pp. 179–205, Kluwer Academic, Dordrecht, The Netherlands.

    Google Scholar 

  36. McCloskey, J.A. (1969) Mass Spectrometry of Lipids and Steroids, Methods Enzymol. 14, 382–450.

    Article  CAS  Google Scholar 

  37. Shirasaka, N., Nishi, K., and Shimizu, S. (1995) Occurrence of a Furan Fatty Acid in Marine Bacteria, Biochim. Biophys. Acta 1258, 225–227.

    PubMed  Google Scholar 

  38. Scheinkönig, J., Hannemann, K., and Spiteller, G. (1995) Methylation of the β-Positions of the Furan Ring in F-acids, Biochim. Biophys. Acta 1254, 73–76.

    PubMed  Google Scholar 

  39. Busse, H.J., Kämpfer, P., and Denner, E.B.M. (1999) Chemotaxonomic Characterization of Sphingomonas, J. Ind. Microbiol. Biotechnol. 23, 242–251.

    Article  PubMed  CAS  Google Scholar 

  40. Rontani, J.-F., Koblizek, M., Beker, B., Bonin, P., and Kolber, Z. (2003) On the Origin of cis-Vaccenic Acid Photodegradation Products in the Marine Environment, Lipids 38, 1085–1092.

    PubMed  CAS  Google Scholar 

  41. Klok, J., Baas, M., Cox, H.C., de Leeuw, J.W., Rijpstra, W.I.C., and Schenck, P.A. (1988) The Mode of Occurrence of Lipids in a Namibian Shelf Diatomaceous Ooze with Emphasis on the β-Hydroxy Fatty Acids, Org. Geochem. 12, 75–80.

    Article  CAS  Google Scholar 

  42. Marchand, D., Grossi, V., Hirschler-Réa, A., and Rontani, J.-F. (2002) Regiospecific Enzymatic Oxygenation of cis-Vaccenic Acid During Aerobic Senescence of the Halophilic Purple Sulfur Bacterium Thiohalocapsa halophila Lipids 37, 541–548.

    PubMed  CAS  Google Scholar 

  43. Kühn, H., Schewe, T., and Rapoport, S.M. (1986) The Stereochemistry of the Reactions of Lipoxygenases and Their Metabolites. Proposed Nomenclature of Lipoxygenases and Related Enzymes, Adv. Enzymol. 58, 273–311.

    PubMed  Google Scholar 

  44. Wang, T., Yu, W.G., and Powell, W.S. (1992) Formation of Monohydroxy Derivatives of Arachidonic Acid, Linoleic Acid, and Oleic Acid During Oxidation of Low Density Lipoprotein by Copper Ions and Endothelial Cells, J. Lipid Res. 33, 525–537.

    PubMed  CAS  Google Scholar 

  45. Guerrero, A., Casals, I., Busquets, M., Leon, Y., and Manresa, A. (1997) Oxidation of Oleic Acid to (E)-10-Hydroperoxy-8-octadecenoic and (E)-10-Hydroxy-8-octadecenoic Acids by Pseudomonas sp. 42A2, Biochim. Biophys. Acta 1347, 75–81.

    PubMed  CAS  Google Scholar 

  46. Oliw, E.H., Su, C., Skogstrom, T., and Benthin, G. (1998) Analysis of Novel Hydroperoxides and Other Metabolites of Oleic, Linoleic, and Linolenic Acids by Liquid Chromatography-Mass Spectrometry, Lipids 33, 843–852.

    Article  PubMed  CAS  Google Scholar 

  47. Clapp, C.H., Senchak, S.E., Stover, T.J., Potter, T.C., Findeis, P.M., and Novak, M.J. (2001) Soybean Lipoxygenase-Mediated Oxygenation of Monounsaturated Fatty Acids to Enones, J. Am. Chem. Soc. 123, 747–748.

    Article  PubMed  CAS  Google Scholar 

  48. Schewe, T., Rapoport, S.M., and Kühn, H. (1986) Enzymology and Physiology of Reticulocyte Lipoxygenase: Comparison with Other Lipoxygenases, Adv. Enzymol. 58, 191–272.

    PubMed  CAS  Google Scholar 

  49. Marchand, D., and Rontani, J.-F. (2001) Characterisation of Photooxidation and Autoxidation Products of Phytoplanktonic Monounsaturated Fatty Acids in Marine Particulate Matter and Recent Sediments, Org. Geochem. 32, 287–304.

    Article  CAS  Google Scholar 

  50. Galliard, T., and Chan, H.W.-S. (1980) Lipoxygenases, in The Biochemistry of Plants: A Comprehensive Treatise (Stumpf, P.K., and Conn, E.E., eds.), Vol. 4, pp. 131–161, Academic Press, New York.

    Google Scholar 

  51. Hamberg, M. (1987) Mechanism of Corn Hydroperoxide Isomerase: Detection of 12,13(S)-Oxido-9(Z),11-octadecadienoic Acid, Biochim. Biophys. Acta 920, 76–84.

    CAS  Google Scholar 

  52. Galliard, T., Matthew, J.A., Fishwick, M.J., and Wright, A.J. (1976) The Enzymatic Degradation of Lipids Resulting from Physical Disruption of Cucumber (Cucumis sativus) Fruit, Phytochemistry 15, 1647–1650.

    Article  CAS  Google Scholar 

  53. Porter, N.A., Caldwell, S.E., and Mills, K.A. (1995) Mechanisms of Free Radical Oxidation of Unsaturated Lipids, Lipids 30, 277–290.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. -F. Rontani.

About this article

Cite this article

Rontani, J.F., Christodoulou, S. & Koblizek, M. GC-MS structural characterization of fatty acids from marine aerobic anoxygenic phototrophic bacteria. Lipids 40, 97–108 (2005). https://doi.org/10.1007/s11745-005-1364-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-005-1364-6

Keywords

Navigation