Skip to main content
Log in

The potential role for arachidonic and docosahexaenoic acids in protection against some central nervous system injuries in preterm infants

  • Articles
  • Published:
Lipids

Abstract

The risk of central nervous, visual, and auditory damage increases from 2/1000 live births in the normal birthweight to >200/1000 as birthweight falls below 1500 g. Such babies are most likely to be born preterm. Advances in infant care have led to increasing numbers of very-low-birthweight, preterm infants surviving to school age with moderate to severe brain damage. Steroids are one of the current treatments, but they cause significant, long-term problems. The evidence reported here suggests an additional approach to protecting the very preterm infant by supporting neurovascular membrane integrity. The complications of preterm, very-low-birthweight babies include bronchopulmonary dysplasia, retinopathy of prematurity, intraventricular hemorrhage, periventricular leukomalacia, and necrotizing enterocolitis, all of which have a vascular component. Arachidonic acid (AA) and DHA are essential, structural, and functional constituents of cell membranes. They are especially required for the growth and function of the brain and vascular systems, which are the primary biofocus of human fetal growth. Molecular dynamics and experimental evidence suggest that DHA could be the ligand for the retinoid X receptor (RXR) in neural tissue. RXR activation is an obligatory step in signaling to the nucleus and in the regulation of gene expression. Very preterm babies are born with minimal fat stores and suboptimal circulating levels of these nutrients. Postanatally, they lose the biomagnification of the proportions of AA and DHA by the placenta for the fetus. No current nutritional management repairs these deficits. The placental biomagnification profile highlights AA rather than DHA. The resultant fetal FA profile closely resembles that of the vascular endothelium and not the brain. Without this nourishment, cell membrane abnormalities would be predicted. We present a scientific rationale for a common pathogenic process in the complications of prematurity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

arachidonic acid

ACh:

acetyl choline

BPD:

bronchopulmonary dysplasia

CI:

confidence interval

CPG:

choline phosphoglycerides

EPG:

ethanolamine phosphoglycerides

IL:

interleukin

IVH:

intraventricular hemorrhage

LA:

linoleic acid

MRI:

magnetic resonance imaging

NEC:

necrotizing enterocolitis

OR:

odds ratio

RXR:

retinoid X receptor

ROP:

retinopathy of prematurity

PVL:

periventricular leukomalacia

References

  1. Hagberg, B., Hagberg, G., and Olow, I. (1993) The Changing Panorama of Cerebral Palsy in Sweden, Acta Pediatr. Scand. 82, 387–393.

    CAS  Google Scholar 

  2. Pharoah, P.O.D., Cooke, R.W.I., and Rosenbloom, L. (1990) Birthweight Specific Trends in Cerebral Palsy, Arch. Dis. Child. 65, 602–606.

    CAS  PubMed  Google Scholar 

  3. Pharoah, P.O., Platt, M.J., and Cooke, T. (1996) The Changing Epidemiology of Cerebral Palsy, Arch. Dis. Child. 75, F169-F173.

    CAS  Google Scholar 

  4. Pharoah, P.O., Cooke, T., Johnson, M.A., King, R., and Mutch, L. (1998) Epidemiology of Cerebral Palsy in England and Scotland, 1984–9, Arch. Dis. Child. Fetal Neonatal Ed. 79, F21-F25.

    CAS  PubMed  Google Scholar 

  5. Levine, M. (1990) Cerebral Ultrasound and Neurological Impairment: Telling the Future, Arch. Dis. Child. 65, 469–471.

    Google Scholar 

  6. Hagberg, B., Hagberg, G., Beckung, E., and Uvebrant, P. (2001) Changing Panorama of Cerebral Palsy in Sweden. VIII. Prevalence and Origin in the Birth Year Period 1991–94, Acta Paediatr. 90, 271–277.

    Article  CAS  PubMed  Google Scholar 

  7. Piecuch, R.E., Leonard, C.H., Cooper, B.A., Kilpatrick, S.J., Schlueter, M.A., and Sola, A. (1997) Outcome of Infants Born at 24–26 Weeks' Gestation: II. Neurodeyelopmental Outcome, Obstet. Gynecol. 90, 809–814.

    Article  CAS  PubMed  Google Scholar 

  8. Powls, A., Botting, N., Cooke, R.W., Stephenson, G., and Marlow, N. (1997) Visual Impairment in Very Low Birthweight Children, Arch. Dis. Child. Fetal Neonatal 76, F82-F87.

    CAS  Google Scholar 

  9. Cioni, G., Fazzi, B., Coluccini, M., Bartalena, L., Boldrini, A., and van Hof-van Duin, J. (1997) Cerebral Visual Impairment in Preterm Infants with Periventricular Leukomalacia, Pediatr. Neurol. 17, 331–338.

    Article  CAS  PubMed  Google Scholar 

  10. Peterson, B.S., Vohr, B., Staib, L.H., Cannistraci, C.J., Dolberg, A., Schneider, K.C., Katz, K.H., Westerveld, M., Sparrow, S., Anderson, A.W., Duncan, C.C., Makuch, R.W., Gore, J.C., and Ment, L.R. (2000) Regional Brain Volume Abnormalities and Long-Term Cognitive Outcome in Preterm Infants, J. Am. Med. Assoc. 284, 1939–1947.

    Article  CAS  Google Scholar 

  11. Fulton, A.B., Hansen, R.M., Petersen, R.A., and Vanderveen, D.K. (2001) The Rod Photoreceptors in Retinopathy of Prematurity: An Electroretinographic Study, Arch. Ophthalmol. 119, 499–505.

    CAS  PubMed  Google Scholar 

  12. Uauy, R., Peirano, P., Hoffman, D., Mena, P., Birch, D., and Birch, E. (1996) Role of Essential Fatty Acids in the Function of the Developing Nervous System, Lipids 31 (Suppl.), S167-S176.

    CAS  PubMed  Google Scholar 

  13. Uany, R., Mena, P., and Rojas, C. (2000) Essential Fatty Acids in Early Life: Structural and Functional Role, Proc. Nutr. Soc. 59, 3–15.

    Article  Google Scholar 

  14. Uany, R., Peirano, P., Hoffman, D., Mena, P., Birch, D., and Birch, E. (1996) Role of Essential Fatty Acids in the Function of the Developing Nervous System, Lipids 31 (Suppl.), S167-S176.

    Google Scholar 

  15. Carlson, S.E., Montalto, M.B., Ponder, D.L., Werkman, S.H., and Korones, S.B. (1998) Lower Incidence of Necrotising Enterocolitis in Infants Fed a Preterm Formula with Egg Phospholipids, Pediatr. Res. 44, 491–498.

    CAS  PubMed  Google Scholar 

  16. Tapia, J.L., Ramirez, R., Cifuentes, J., Fabres, J., Hübner, M.E., Bancalari, A., Mercado, E., Standen, J., and Escobar, M. (1998) The Effect of Early Dexamethasone Administration on Bronchopulmonary Dysplasia in Preterm Infants with Respiratory Distress Syndrome, J. Pediatr. 132, 48–52.

    Article  CAS  PubMed  Google Scholar 

  17. Bunt, J.E., Carnielli, V.P., Darcos Wattimena, J.L., Hop, W.C., Sauer, P.J., and Zimmermann, L.J. (2000) The Effect in Premature Infants of Prenatal Corticosteroids on Endogenous Surfactant Synthesis as Measured with Stable Isotopes, Am. J. Respir. Crit. Care Med. 162, 844–849.

    CAS  PubMed  Google Scholar 

  18. Greenough, A. (1998) Gains and Losses from Dexamethasone for Neonatal Chronic Lung Disease, Lancet 352, 835–836.

    Article  CAS  PubMed  Google Scholar 

  19. Canterino, J.C., Verma, U., Visintainer, P.F., Elimian, A., Klein, S.A., and Tejani, N. (2001) Antenatal Steroids and Neonatal Periventricular Leukomalacia, Obstet. Gynecol. 97, 135–139.

    Article  CAS  PubMed  Google Scholar 

  20. Ahlbom, E., Gogvadze, V., Chen, M., Celsi, G., and Ceccatelli, S. (2000) Prenatal Exposure to High Levels of Glucocorticoids Increases the Susceptibility of Cerebellar Granule Cells to Oxidative Stress-Induced Cell Death, Proc. Natl. Acad. Sci. USA 97, 14726–14730.

    Article  CAS  PubMed  Google Scholar 

  21. Stark, A.R., Carlo, W.A., Tyson, J.E., Papile, L.A., Wright, L.L., Shankaran, S., Donovan, E.F., Oh, W., Bauer, C.R., Saha, S., Poole, W.K., and Stoll, B.J. (2001) Adverse Effects of Early Dexamethasone in Extremely-Low-Birth-Weight Infants. National Institute of Child Health and Human Development Neonatal Research Network, N. Engl. J. Med. 344, 95–101.

    Article  CAS  PubMed  Google Scholar 

  22. Barrington, K.J. (2001) The Adverse Neuro-Developmental Effects of Postnatal Steroids in the Preterm Infant: A Systematic Review of RCTs, BMC Pediatr. 1, 1–14.

    Article  CAS  PubMed  Google Scholar 

  23. Speer, C.P. (2001) New Insights into the Pathogenesis of Pulmonary Inflammation in Preterm Infants, Biol. Neonate 79, 205–209.

    Article  CAS  PubMed  Google Scholar 

  24. Shinwell, E.S., Karplus, M., Reich, D., Weintraub, Z., Blazer, S., Bader, D., Yurman, S., Dolfin, T., Kogan, A., Dollberg, S., et al. (2000) Early Postnatal Dexamethasone Treatment and Increased Incidence of Cerebral Palsy, Arch. Dis. Child. Fetal Neonatal Ed. 83, F177-F181.

    Article  CAS  PubMed  Google Scholar 

  25. Glozman, S., Green, P., and Yavin, E. (1998) Intraamniotic Ethyl Docosahexaenoate Administration Protects Fetal Rat Brain from Ischemic Stress, J. Neurochem. 70, 2484–2491.

    Article  CAS  PubMed  Google Scholar 

  26. Crosby, A.J., Wahle, K.W., and Duthie, G.G. (1996) Modulation of Glutathione Peroxidase Activity in Human Vascular Endothelial Cells by Fatty Acids and the Cytokine Interleukin-1β, Biochim. Biophys. Acta 1303, 187–192.

    PubMed  Google Scholar 

  27. Thies, F., Miles, E.A., Nebe-von-Caron, G., Powell, J.R., Hurst, T.L., Newsholme, E.A., and Calder, P.C. (2001) Influence of Dietary Supplementation with Long-Chain n−3 or n−6 Polyunsaturated Fatty Acids on Blood Inflammatory Cell Populations and Functions and on Plasma Soluble Adhesion Molecules in Healthy Adults, Lipids 36, 1183–1193.

    Article  CAS  PubMed  Google Scholar 

  28. FAO/WHO (1978) Joint Consultation on The Role of Dietary Fats and Oils in Human Nutrition, FAO Nutrition Report no. 3, Food and Agriculture Organization, Rome.

    Google Scholar 

  29. Sinclair, A.J., and Crawford, M.A. (1972) The Accumulation of Arachidonate and Docosahexaenoate in the Developing Rat Brain, J. Neurochem. 19, 1753–1758.

    Article  CAS  PubMed  Google Scholar 

  30. Sinclair, A.J., and Crawford, M.A. (1972) The Incorporation of Linolenic and Docosahexaenoic Acid into Liver and Brain Lipids of Developing Rats, FEBS Lett. 26 127–129.

    Article  CAS  PubMed  Google Scholar 

  31. Sinclair, A.J. (1975) Long-Chain Polyunsaturated FA in the Mammalian Brain, Proc. Nutr. Soc. 34, 287–291.

    Article  CAS  PubMed  Google Scholar 

  32. Leyton, J., Drury, P.J., and Crawford, M.A. (1987) Differential Oxidation of Saturated and Unsaturated Fatty Acids in vivo in the Rat, Br. J. Nutr. 57, 383–393.

    Article  CAS  PubMed  Google Scholar 

  33. Cunnane, S.C., Menard, C.R., Likhodi, S.S., Brenna, J.T., and Crawford, M.A. (1999) Carbon Recycling into de novo Lipogenesis Is a Major Pathway in Neonatal Metabolism of Linoleate and α-Linolenate, Prostaglandins Leukot. Essent. Fatty Acids 60, 387–392.

    Article  CAS  PubMed  Google Scholar 

  34. Pawlosky, R.J., Hibbeln, J.R., Novotny, J.A., and Salem, N., Jr. (2001) Physiological Compartmental Analysis of α-Linolenic Acid Metabolism in Adult Humans, J. Lipid Res. 42, 1257–1265.

    CAS  PubMed  Google Scholar 

  35. Crawford, M.A. (2000) The Placental Delivery of Arachidonic and Docosahexaenoic Acids: Implications for the Lipid Nutrition of the Preterm Infant, Am. J. Clin. Nutr. 71, 275S-284S.

    CAS  PubMed  Google Scholar 

  36. Leaf, A.A., Leighfield, M.J., Costeloe, K.L., and Crawford, M.A. (1992) Factors Affecting Long-Chain Polyunsaturated Fatty Acid Composition of Plasma Choline Phosphoglycerides in Preterm Infants, J. Pediatr. Gastroenterol. Nutr. 14, 300–308.

    CAS  PubMed  Google Scholar 

  37. Carlson, S.E. (1996) Arachidonic Acid Status of Human Infants: Influence of Gestational Age at Birth and Diets with Very Long Chain n−3 and n−6 Fatty Acids, J. Nutr. 126, 1092S-1098S.

    CAS  PubMed  Google Scholar 

  38. Crawford, M.A., Costeloe, K., Ghebremeske, K., and Phylactos, A. (1998) The Inadequacy of the Essential Fatty Acid Content of Present Preterm Feeds, Eur. J. Pediatr. 157 (Suppl.), S23-S27.

    CAS  PubMed  Google Scholar 

  39. Leaf, A.A., Leighfield, M.J., Costeloe, K.L., and Crawford, M.A. (1992) Factors Affecting Long-Chain Polyunsaturated Fatty Acid Composition of Plasma Choline Phosphoglycerides in Preterm Infants, J. Pediatr. Gastroenterol. Nutr. 14, 300–308.

    CAS  PubMed  Google Scholar 

  40. Nelson, K.B. (2002) The Epidemiology of Cerebral Palsy in Term Infants, Ment. Retard. Dev. Disabil. Res. Rev. 8, 146–150.

    Article  PubMed  Google Scholar 

  41. von Minckwitz, G., Grischke, E.M., Schwab, S., Hettinger, S., Loibl, S., Aulmann, M., and Kaufmann, M. (2000) Predictive Value of Serum Interleukin-6 and −8 Levels in Preterm Labor or Rupture of the Membranes, Acta Obstet. Gynecol. Scand. 79, 667–672.

    Article  Google Scholar 

  42. Toti, P., and De Felice, C. (2001) Chorioamnionitis and Fetal/Neonatal Brain Injury, Biol. Neonate 79, 201–204.

    Article  CAS  PubMed  Google Scholar 

  43. Duggan, P.J., Maalouf, E.F., Watts, T.L., Sullivan, M.H.F., Counsell, S.J., Allsop, J., Al-Nakib, L., Rutherford, M.A., Battin, M., Roberts, I., and Edwards, A.D. (2001) Intrauterine T-Cell Activation and Increased Proinflammatory Cytokine Concentrations in Preterm Infants with Cerebral Lesions, Lancet 358, 1699–1700.

    Article  CAS  PubMed  Google Scholar 

  44. Nelson, K.B., Dambrosia, J.M., Grether, J.K., and Phillips, T.M. (1998) Neonatal Cytokines and Coagulation Factors in Children with Cerebral Palsy, Ann. Neurol. 44, 665–675.

    Article  CAS  PubMed  Google Scholar 

  45. Harbige, L.S., Yeatman, N., Amor, S., and Crawford, M.A. (1995) Prevention of Experimental Auto-Immune Encephalomyelitis in Lewis Rats by a Novel Fungal Source of γ-Linolenic Acid, Br. J. Nutr. 74, 701–715.

    Article  CAS  PubMed  Google Scholar 

  46. Crawford, M.A., Costeloe, K., Doyle, W., Leighfield, M.J., Lennon, E.A., and Meadows, N. (1990) Potential Diagnostic Value of the Umbilical Artery as a Definition of Neural Fatty Acid Status of the Fetus During Its Growth, Biochem. Soc. Trans. 18, 761–766.

    CAS  PubMed  Google Scholar 

  47. Leaf, A.A., Leighfield, M.J., Costeloe, K.L., and Crawford, M.A. (1992) Factors Affecting Long-Chain Polyunsaturated Fatty Acid Composition of Plasma Choline Phosphoglycerides in Preterm Infants, J. Pediatr. Gastroenterol. Nutr. 14, 300–308.

    Article  CAS  PubMed  Google Scholar 

  48. Leaf, A.A., Leighfield, M.J., Costeloe, K.L., and Crawford, M.A. (1992) Long-Chain Polyunsaturated Fatty Acids in Fetal Growth, Early Hum. Dev. 30, 183–191.

    Article  CAS  PubMed  Google Scholar 

  49. Rump, P., Mensink, R.P., Kester, A.D., and Hornstra, G. (2001) Essential Fatty Acid Composition of Plasma Phospholipids and Birth Weight: A Study in Term Neonates, Am. J. Clin. Nutr. 73, 797–806.

    CAS  PubMed  Google Scholar 

  50. Daneshmand, S.S., Chmait, R.H., Moore, T.R., and Bogic, L. (2002) Preterm Premature Rupture of Membranes: Vascular Endothelial Growth Factor and Its Association with Histologic Chorioamnionitis, Am. J. Obstet. Gynecol. 187, 1131–1136.

    Article  CAS  PubMed  Google Scholar 

  51. Levin, A.A., Sturzenbecker, L.J., Kazmer, S., Bosakowski, T., Huselton, C., Allenby, G., Speck, J., Kratzeisen, C., Rosenberger, M., Lovey, A., et al. (1992) 9-cis Retinoic Acid Stereo-isomer Binds and Activates the Nuclear Receptor RXR-α, Nature 355, 359–361.

    Article  CAS  PubMed  Google Scholar 

  52. Chawla, A., Repa, J.J., Evans, R.M., and Mangelsdorf, D.J. (2001) Opening the X-Files, Science 294, 1866–1870.

    Article  CAS  PubMed  Google Scholar 

  53. de Urquiza, A.M., Liu, S., Sjoberg, M., Zetterstrom, R.H., Griffiths, W., Sjovall, J., and Perlmann, T. (2000) Docosahexaenoic Acid, a Ligand for the Retinoid X Receptor in Mouse Brain, Science 290, 2140–2144.

    Article  PubMed  Google Scholar 

  54. Hibbeln, J.R. (1998) Fish Consumption and Major Depression, Lancet 351, 1213–1215. Comment in: Lancet 352, 71–72.

    Article  CAS  PubMed  Google Scholar 

  55. Ikemoto, A., Nitta, A., Furukawa, S., Ohishi, M., Nakamura, A., Fujii, Y., and Okuyama, H. (2000) Dietary n−3 Fatty Acid Deficiency Decreases Nerve Growth Factor Content in Rat Hippocampus, Neurosci. Lett. 285, 99–102.

    Article  CAS  PubMed  Google Scholar 

  56. Kitajka, K., Puskas, L.G., Zvara, A., Hackler, L., Jr., Barcelo-Coblijn, G., Yeo, Y.K., and Farkas, T. (2002) The Role of n−3 Polyunsaturated Fatty Acids in Brain: Modulation of Rat Brain Gene Expression by Dietary n−3 Fatty Acids, Proc. Natl. Acad. Sci. USA 99, 2619–2624.

    Article  CAS  PubMed  Google Scholar 

  57. FAO/WHO (1994) Joint Consultation on The Role of Dietary Fats and Oils in Human Nutrition, Food and Agriculture Organization, Rome.

    Google Scholar 

  58. Hibbeln, J.R. (2001) Seafood Consumption and Homicide Mortality. A Cross-National Ecological Analysis, World Rev. Nutr. Diet. 88, 41–46.

    Article  CAS  PubMed  Google Scholar 

  59. Hibbeln, J.R., (2002) Seafood Consumption, the DHA Content of Mothers' Milk and Prevalence Rates of Postpartum Depression: A Cross-National, Ecological Analysis, J. Affect. Disord. 69, 15–29.

    Article  CAS  PubMed  Google Scholar 

  60. SanGiovanni, J.P., Berkey, C.S., Dwyer, J.T., and Colditz, G.A. (2000) Dietary Essential Fatty Acids, Long-Chain Polyunsaturated Fatty Acids, and Visual Resolution Acuity in Healthy Full Term Infants: A Systematic Review, Early Hum. Dev. 57, 165–188.

    Article  CAS  PubMed  Google Scholar 

  61. Birch, E.E., Garfield, S., Hoffman, D.E., Uauy, R., and Birch, D.G. (2000) A Randomised Trial of Early Dietary Supply of Long-Chain Polyunsaturated Fatty Acids and Mental Development in Term Infants, Dev. Med. Child. Neurol. 42, 174–181.

    Article  CAS  PubMed  Google Scholar 

  62. Saugstad, O.D. (1996) Mechanisms of Tissue Injury by Oxygen Radicals: Implications for Neonatal Disease, Acta Paediatr. 85, 1–4.

    CAS  PubMed  Google Scholar 

  63. Phylactos, A.C., Leaf, A.A., Costeloe, K., and Crawford, M.A. (1995) Erythrocyte Cupric/Zinc Superoxide Dismutase Exhibits Reduced Activity in Preterm and Low Birthweight Infants at Birth, Acta Paediatr. 84, 1421–1425.

    CAS  PubMed  Google Scholar 

  64. Raju, T.N., Langenberg, P., Bhutani, V., and Quinn, G.E. (1997) Vitamin E Prophylaxis to Reduce Retinopathy of Prematurity: A Reappraisal of Published Trials, J. Pediatr. 131, 844–850.

    Article  CAS  PubMed  Google Scholar 

  65. Budowski, P., Leighfield, M.J., and Crawford, M.A. (1987) Nutritional Encephalomalacia in the Chick: An Exposure of the Vulnerable Period for Cerebellar Development and the Possible Need for Both ω6 and ω3 Fatty Acids, Br. J. Nutr. 58, 511–520.

    Article  CAS  PubMed  Google Scholar 

  66. Budowski, P. (1996) The Omega-3 Fatty Acid Peroxidation Paradox, Redox Rep. 2, 75–77.

    CAS  Google Scholar 

  67. Budowski, P., Hawkey, C.M., and Crawford, M.A. (1980) L'Effet Protecteur de l'Acide α-Linolenique sur l'Encephalomalacie chez le Poulet, Ann. Nutr. Alim. 34, 389–400.

    CAS  Google Scholar 

  68. Crawford, M.A., Costeloe, K., Ghebremeskel, K., Phylactos, A., Skirvin, L., and Stacey, F. (1997) Are Deficits of Arachidonic and Docosahexaenoic Acids Responsible for the Neural and Vascular Complications of Preterm Babies? Am. J. Clin. Nutr. 66, 1032S-1041S.

    CAS  PubMed  Google Scholar 

  69. Ghosh, P., Butsanis, D., Ghebremeskel, K., Crawford, M.A., and Poston, L. (2001) Abnormal Fatty Acid Composition and Small Artery Function in Offspring of Rats Fed a High Fat Diet in Pregnancy, J. Physiol. 533, 815–822.

    Article  CAS  PubMed  Google Scholar 

  70. Topp, M., Langhoff-Roos, J., Uldall, P., and Kristensen, J. (1996) Intrauterine Growth and Gestational Age in Preterm Infants with Cerebral Palsy, Early Hum. Dev. 44, 27–36.

    Article  CAS  PubMed  Google Scholar 

  71. Hirafuji, M., Machida, T., Tsunoda, M., Miyamoto, A., and Minami, M. (2002) Docosahexaenoic Acid Potentiates Interleukin-1β Induction of Nitric Oxide Synthase Through Mechanism Involving p44/42 MAPK Activation in Rat Vascular Smooth Muscle Cells, Br. J. Pharmacol. 136, 613–619.

    Article  CAS  PubMed  Google Scholar 

  72. Glozman, S., Green, P., and Yavin, E. (1998) Intraamniotic Ethyl Docosahexaenoate Administration Protects Fetal Rat Brain from Ischemic Stress, Neurochemistry 70, 2484–2491.

    CAS  Google Scholar 

  73. Beckman, J.S. (1991) The Double-Edged Role of Nitric Oxide in Brain Function and Superoxide-Mediated Injury, J. Dev. Physiol. 15, 53–59.

    CAS  PubMed  Google Scholar 

  74. Bolanos, J.P., and Almeida, A. (1999) Roles of Nitric Oxide in Brain Hypoxia-Ischemia, Biochim. Biophys. Acta 1411, 415–436.

    Article  CAS  PubMed  Google Scholar 

  75. Homayoun, P., Rodriguez de Turco, E.B., Parkins, N.E., Lane, D.C., Soblosky, J., Carey, M.E., and Bazan, N.G. (1997) Delayed Phospholipid Degradation in Rat Brain After Traumatic Brain Injury, J. Neurochem. 69, 199–205.

    Article  CAS  PubMed  Google Scholar 

  76. Yoon, B.H., Romero, R., Kim, C.J., Jun, J.K., Gomez, R., Choi, J.H., and Syn, H.C. (1995) Amniotic Fluid Interleukin-6, a Sensitive Test for Antenatal Diagnosis of Acute Inflammatory Lesions of Preterm Placenta and Prediction of Perinatal Morbidity, Am. J. Obstet. Gynecol. 172, 960–970.

    Article  CAS  PubMed  Google Scholar 

  77. Beckman, J.S., and Koppenol W.H. (1996) Nitric Oxide, Superoxide, and Peroxynitrite, the Good, the Bad, and Ugly, Am. J. Physiol. 271, C1424-C1437.

    CAS  PubMed  Google Scholar 

  78. Thies, F., Garry, J.M., Yaqoob, P., Rerkasem, K., Williams, J., Shearman, C.P., Gallagher, P.J., Calder, P.C., and Grimble, R.F. (2003) Association of n−3 Polyunsaturated Fatty Acids with Stability of Atherosclerotic Plaques: A Randomised Controlled Trial, Lancet 361, 477–485.

    Article  CAS  PubMed  Google Scholar 

  79. Engler, M.M., Engler, M.B., Pierson, D.M., Molteni, L.B., and Molteni, A. (2003) Effects of Docosahexaenoic Acid on Vascular Pathology and Reactivity in Hypertension, Exp. Biol. Med. 228, 299–307.

    CAS  Google Scholar 

  80. Crawford, M.A., Costeloe, K., Ghebremeskel, K., and Phylactos, A. (1998) The Inadequacy of the Essential Fatty Acid Content of Present Preterm Feeds, Eur. J. Pediatr. 157 (Suppl. 1), S23-S27.

    CAS  PubMed  Google Scholar 

  81. Hindenes, J.O., Nerdal, W., Guo, W., Di, L., Small, D.M., and Holmsen, H. (2000) Physical Properties of the Transmembrane Signal Molecule, sn-1-Stearoyl-2-arachidonoylglycerol. Acyl Chain Segregation and Its Biochemical Implications, J. Biol. Chem. 275, 6857–6867.

    Article  CAS  PubMed  Google Scholar 

  82. Crawford, M.A. (2000) The Placental Delivery of Arachidonic and Docosahexaenoic Acids: Implications for the Lipid Nutrition of the Preterm Infant, Am. J. Clin. Nutr. 71, 275S-284S.

    CAS  PubMed  Google Scholar 

  83. Williams, G., and Crawford, M.A. (1987) Comparison of the Fatty Acid Component in Structural Lipids from Dolphins, Zebra and Giraffe: Possible Evolutionary Implications, J. Zool. Lond. 213, 673–684.

    Article  CAS  Google Scholar 

  84. Crawford, M.A., Casperd, N.M., and Sinclair, A.J. (1976) The Long-Chain Metabolites of Linoleic and Linolenic Acids in Liver and Brain in Herbivores and Carnivores, Comp. Biochem. Physiol. 54B, 395–401.

    Google Scholar 

  85. Crawford, M.A., Bloom, M., Broadhurst, C.L., Schmidt, W.F., Cunnane, S.C., Galli, C., Ghebremeskel, K., Linseisen, F., Lloyd-Smith, J., and Parkington, J. (1999) Evidence for the Unique Function of DHA During the Evolution of the Modern Hominid Brain, Lipids 34, S39-S47.

    Article  CAS  PubMed  Google Scholar 

  86. Taylor, P.D., Khan, I.Y., Lakasing, L., Dekou, V., O'Brien-Coker, I., Mallet, A.I., Hanson, M.A., and Poston, L. (2003) Uterine Artery Function in Pregnant Rats Fed a Diet Supplemented with Animal Lard, Exp. Physiol. 88, 389–398.

    Article  CAS  PubMed  Google Scholar 

  87. Golfetto, I. (2003) Essentiality of Polyunsaturated Fatty Acids in Early Development, Ph.D. Thesis, London Metropolitan University, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Crawford.

About this article

Cite this article

Crawford, M.A., Golfetto, I., Ghebremeskel, K. et al. The potential role for arachidonic and docosahexaenoic acids in protection against some central nervous system injuries in preterm infants. Lipids 38, 303–315 (2003). https://doi.org/10.1007/s11745-003-1065-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-003-1065-1

Keywords

Navigation