Skip to main content
Log in

Effects of conjugated linoleic acid isomers on lipid-metabolizing enzymes in male rats

  • Published:
Lipids

Abstract

Male weanling Wistar rats (n=15), weighing 200–220 g, were allocated for 6 wk to diets containing 1% (by weight) of conjugated linoleic acid (CLA), either as the 9c,11t-isomer, the 10t,12c-isomer, or as a mixture containing 45% of each of these isomers. The five rats of the control group received 1% of oleic acid instead. Selected enzyme activities were determined in different tissues after cellular subfractionation. None of the CLA-diet induced a hepatic peroxisome-proliferation response, as evidenced by a lack of change in the activity of some characteristic enzymes [i.e., acyl-CoA oxidase, CYP4A1, but also carnitine palmitoyltransferase-I (CPT-I)] or enzyme affected by peroxisome-proliferators (glutathione S-transferase). In addition to the liver, the activity of the rate-limiting β-oxidation enzyme in mitochondria, CPT-I, did not change either in skeletal muscle or in heart. Conversely, its activity increased more than 30% in the control value in epididymal adipose tissue of the animals fed the CLA-diets containing the 10t,12c-isomer. Conversely, the activity of phosphatidate phosphohydrolase, a rate-limiting enzyme in glycerolipid neosynthesis, remained unchanged in adipose tissue. Kinetic studies conducted on hepatic CPT-I and peroxisomal acyl-CoA oxidase with CoA derivatives predicted a different channeling of CLA isomers through the mitochondrial or the peroxisomal oxidation pathways. In conclusion, the 10t,12c-CLA isomer seems to be more efficiently utilized by the cells than its 9c,11t homolog, though the Wistar rat species appeared to be poorly responsive to CLA diets for the effects measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACO:

acyl-CoA oxidase

CLA:

conjugated linoleic acid

CPT:

carnitine palmitoyl transferase

CYP:

cytochrome P450

OD:

optical density

PAP:

phosphatidate phosphohydrolase

References

  1. Banni, S., and Martin, J.C. (1998) Conjugated Linoleic Acid and Metabolites, in Trans Fatty Acids in Human Nutrition (Christie, W.W., and Sébédio, J.L., eds.), Vol. 9, pp. 261–302, The Oily Press Ltd., Dundee.

    Google Scholar 

  2. Parodi, P.W. (1997) Milk Fat Conjugated Linoleic Acid: Can It Help Prevent Breast Cancer? in Proceedings of the Nutrition Society of New Zealand (Sayage, G.P., ed.), pp. 137–149, Nutrition Society of New Zealand, Canterbury.

    Google Scholar 

  3. Belury, M.A. (1995) Conjugated Dienoic Linoleate: A Polyunsaturated Fatty Acid with Unique Chemoprotective Properties, Nutr. Rev. 53, 83–89.

    Article  PubMed  CAS  Google Scholar 

  4. Ip, C., Scimeca J.A., and Thompson, H.J. (1994) Conjugated Linoleic Acid. A Powerful Anticarcinogen from Animal Fat Sources, Cancer 74, 1050–1054.

    Article  PubMed  CAS  Google Scholar 

  5. Doyle, E. (1998) Scientific Forum Explores CLA Knowledge, INFORM 9, 69–72.

    Google Scholar 

  6. Haumann, B.F. (1996) Conjugated Linoleic Acid Offers Research Promise, INFORM 7, 152–159.

    Google Scholar 

  7. Fritsche, J., and Steinhart, H. (1998) Analysis, Occurrence, and Physiological Properties of trans Fatty Acids (TFA) with Particular Emphasis on Conjugated Linoleic Acid Isomers (CLA)—A Review, Fett-Lipid 100, 190–210.

    Article  CAS  Google Scholar 

  8. Belury, M.A., Moya-Camarena, S.Y., Liu, K.L., and Heuvel, J.P.V. (1997) Dietary Conjugated Linoleic Acid Induces Peroxisome-Specific Enzyme Accumulation and Ornithine Decarboxylase Activity in Mouse Liver, J. Nutr. Biochem. 8, 579–584.

    Article  CAS  Google Scholar 

  9. Moya-Camarena, S.Y., Vanden Heuvel, J.P., and Belury, M.A. (1999) Conjugated Linoleic Acid Activates Peroxisome Proliferator-Activated Receptor α and β Subtypes but Does Not Induce Hepatic Peroxisome Proliferation in Sprague-Dawley Rats, Biochim. Biophys. Acta 1436, 331–342.

    PubMed  CAS  Google Scholar 

  10. Park, Y., Albright, K.J., Liu, W., Storkson, J.M., Cook, M.E., and Pariza, M.W. (1997) Effect of Conjugated Linoleic Acid on Body Composition in Mice, Lipids 32, 853–858.

    Article  PubMed  CAS  Google Scholar 

  11. Park, Y., Storkson, J.M., Albright, K.J., Liu, W., and Pariza, M.W. (1999) Evidence That the trans-10,cis-12 Isomer of Conjugated Linoleic Acid Induces Body Changes in Mice, Lipids 34, 235–241.

    Article  PubMed  CAS  Google Scholar 

  12. Pariza, M., Park, Y., Cook, M., Albright, K., and Liu, W. (1996) Conjugated Linoleic Acid (CLA) Reduces Body Fat, FASEB J. 11, 3227.

    Google Scholar 

  13. West, D.B., Delany, J.P., Camet, P.M., Blohm, F., Truett, A.A., and Scimeca, J. (1998) Effects of Conjugated Linoleic Acid on Body Fat and Energy Metabolism in the Mouse, Am. J. Physiol. 44, R667-R672.

    Google Scholar 

  14. Christie, W.W., Dobson, G., and Gunstone, F.D. (1997) Isomers in Commercial Samples of Conjugated Linoleic Acid, Lipids 32, 1231.

    Article  PubMed  CAS  Google Scholar 

  15. Ackman, R.G. (1998) Laboratory Preparation of Conjugated Linoleic Acids, J. Am. Oil Chem. Soc. 75, 1227.

    CAS  Google Scholar 

  16. Sehat, N., Yurawecz, M.P., Roach, J.A.G., Mossoba, M.M., Kramer, J.K.G., and Ku, Y. (1998) Silver-Ion High-Performance Chromatographic Separation and Identification of Conjugated Linoleic Acid Isomers, Lipids 33, 217–221.

    Article  PubMed  CAS  Google Scholar 

  17. Gavino, G.R., and Gavino, V.C. (1991) Rat Liver Outer Mitochondrial Carnitine Palmitoyltransferase Activity Towards Long-Chain Polyunsaturated Fatty Acids and Their CoA Esters, Lipids 26, 266–270.

    PubMed  CAS  Google Scholar 

  18. Leyton, J., Drury, P.J., and Crawford, M.A. (1987) Differential Oxidation of Saturated and Unsaturated Fatty Acids in vivo in the Rat, Br. J. Nutr. 58, 383–393.

    Article  Google Scholar 

  19. Lavillonnière, F., Martin, J.C., Bougnoux, P., and Sébédio, J.L. (1998) Analysis of Conjugated Linoleic Acid Isomers and Content in French Cheeses, J. Am. Oil Chem. Soc. 75, 343–352.

    Google Scholar 

  20. Dobson, G. (1998) Identification of Conjugated Fatty Acids by Gas Chromatography-Mass Spectrometry of 4-Methyl-1,2,4-triazoline-3,5-dione Adducts, J. Am. Oil Chem. Soc. 75, 137–142.

    CAS  Google Scholar 

  21. Berdeaux, O., Christie, W.W., Gunstone, F.D., and Sébédio, J.L. (1997) Large-Scale Synthesis of Methyl cis-9,trans-11-Octadecadienoate from Methyl Ricinoleate, J. Am. Oil Chem. Soc. 74, 1011–1015.

    CAS  Google Scholar 

  22. Berdeaux, O., Voinot, L., Angioni, E., Juanéda, P., and Sébédio, J.L. (1998) A Simple Method of Preparation of Methyl trans-10,cis-12- and cis-9,trans-11-Octadecadienoates from Methyl Linoleate, J. Am. Oil Chem. Soc. 75, 1749–1755.

    CAS  Google Scholar 

  23. Lazarow, P.B. (1976) Assay of Peroxisomal Beta-Oxidation of Fatty Acids, in Methods in Enzymology, Vol. 72, pp. 315–319, Academic Press, New York.

    Google Scholar 

  24. Kawaguchi, A., Yoshimura, T., and Okuda, S., (1981) A New Method for the Preparation of Acyl-CoA Thioesters, J. Biochem. 89, 337–339.

    PubMed  CAS  Google Scholar 

  25. Bieber, L.L., Abraham, T., and Helmrath, T. (1972) A Rapid Spectrometric Assay for Carnitine Palmitoyltransferase, Anal. Biochem. 50, 509–518.

    Article  PubMed  CAS  Google Scholar 

  26. Pacot, C., Petit, M., Caira, F., Rollin, M., Behechti, N., Grégoire, S., Cherkaoui Malki, M., Cavatz, C., Moisant, M., Moreau, C., Thomas, C., Descotes, G., Gallas, J.F., Deslex, P., Althoff, J., Zahnd, J.P., Lhuguenot, J.C., and Latruffe, N. (1993) Response of Genetically Obese Zucker Rats to Ciprofibrate, a Hypolipidemic Agent, with Peroxisome Proliferation Activity as Compared to Zucker Lean and Sprague-Dawley Rats, Biol. Cell 77, 27–35.

    Article  PubMed  CAS  Google Scholar 

  27. Amet, Y., Berthou, F., Goasduff, T., Salaun, J.P., Le Breton, L., and Menez, J.F. (1994) Evidence That Cytochrome P450 2E1 Is Involved in the (ω-1)-Hydroxylation of Lauric Acid in Rat Liver Microsomesd, Biochem. Biophys. Res. Commun. 203, 1168–1174.

    Article  PubMed  CAS  Google Scholar 

  28. Orton, T.C., and Parker, G.L. (1982) The Effect of Hypolipidemic Agents on the Hepatic Microsomal Drug-Metabolizing Enzyme System of the Rat. Induction of Cytochrome(s) P-450 with Specificity Toward Terminal Hydroxylation of Lauric Acid, Drug. Metab. Dispos. 10, 10110–10115.

    Google Scholar 

  29. Laignelet, L., Narbonne, J.F., Lhuguenot, J.C., and Riviere, J.L. (1989) Induction and Inhibition of Rat Liver Cytochrome(s) P-450 by an Imidazole Fungicide (prochloraz), Toxicology 59, 271–284.

    Article  PubMed  CAS  Google Scholar 

  30. Walton, P.A., and Possmayer, F. (1985) Mg2+-Dependent Phosphatidate Phosphohydrolase of Rat Lung: Development of an Assay Employing a Defined Chemical Substrate Which Reflects the Phosphohydrolase Activity Measured Using Membrane-Bound Substrate, Anal. Biochem. 151, 479–486.

    Article  PubMed  CAS  Google Scholar 

  31. Surette, M.E., Whelan, J., Broughton, K.S., and Kinsella, J.E. (1992) Evidence of Mechanisms of the Hypotriglyceridemic Effect of n−3 Polyunsaturated Fatty Acids, Biochim. Biophys. Acta 1126, 199–205.

    PubMed  CAS  Google Scholar 

  32. Habig, W.H., Pabst, M.J., and Jakoby, W.B. (1974) Glutathione S-Transferases. The First Enzymatic Step in Mercapturic Acid Formation, J. Biol. Chem. 249, 7130–7139.

    PubMed  CAS  Google Scholar 

  33. Sagnella, G.A. (1985) Model Fitting, Parameter Estimation, Linear and Non-Linear Regression, Trends Biol. Sci. 10, 100–103.

    Article  Google Scholar 

  34. Derrick, J.P., and Ramsay, R.R. (1989) l-Carnitine Acyltransferase in Intact Peroxisomes Is Inhibited by Malonyl-CoA, Biochem. J. 262, 801–806.

    PubMed  CAS  Google Scholar 

  35. Hawkins, J.M., Jones, W.E., Bonner, F.W., and Gibson, G.G. (1987) The Effect of Peroxisome Proliferators on Microsomal, Peroxisomal, and Mitochondrial Enzyme Activities in the Liver and Kidney, Drug Metab. Rev. 18, 441–515.

    PubMed  CAS  Google Scholar 

  36. Bentley, P., Calder, I., Elcombe, C., Grasso, D., Stringer, D., and Wiegand, H.-J. (1993) Hepatic Peroxisome Proliferation in Rodents and Its Significance for Humans, Food Chem. Toxicol. 31, 857–907.

    Article  PubMed  CAS  Google Scholar 

  37. Schoonjans, K., Staels, B., and Auwerx, J. (1996) Role of the Peroxisome Proliferator-Activated Receptor (PPAR) in Mediating the Effects of Fibrates and Fatty Acids on Gene Expression, J. Lipid Res. 37, 907–925.

    PubMed  CAS  Google Scholar 

  38. Master, C., and Crane, D. (1998) On the Role of Peroxisome in Cell Differentiation and Carcinogenesis, Mol. Cell. Biochem. 187, 85–97.

    Article  Google Scholar 

  39. Mannaerts, G.P., Debeer, L.J., Thomas, J., and De Schepper, P.J. (1979) Mitochondrial and Peroxisomal Fatty Acid Oxidation in Liver Homogenates and Isolated Hepatocytes from Control and Clofibrate-Treated Rats, J. Biol. Chem. 254, 4585–4595.

    PubMed  CAS  Google Scholar 

  40. Fleischner, G., Meijer, D.K.F., Levine, W.G., Gatmaitan, Z., Gluck, R., and Arias, I.M. (1975) Effect of Hypolipidemic Drugs, Nafenopin and Clofibrate, on the Concentration of Ligandin and Z Protein in Rat Liver, Biochem. Biophys. Res. Commun. 67, 1401–1407.

    Article  PubMed  CAS  Google Scholar 

  41. Awasthi, Y.C., Singh, S.V., Goel, S.K., and Reddy, J.K. (1984) Irreversible Inhibition of Hepatic Glutathione S-Transferase by Ciprofibrate, a Peroxisome Proliferator, Biochem. Biophys. Res. Commun. 123, 1012–1018.

    Article  PubMed  CAS  Google Scholar 

  42. Foliot, A., Touchard, D., and Celier, C. (1984) Impairment of Hepatic Glutathione S-Transferase Activity as a Cause of Reduced Biliary Sulfobromophthalein Excretion in Clofibrate-Treated Rats, Biochem. Pharmacol. 33, 2829–2834.

    Article  PubMed  CAS  Google Scholar 

  43. Wilkinson, J., and Clapper, M.L. (1997) Detoxication Enzymes and Chemoprevention, Proc. Soc. Exp. Biol. Med. 216, 192–200.

    PubMed  CAS  Google Scholar 

  44. Scimeca, J.A. (1998) Toxicological Evaluation of Dietary Conjugated Linoleic Acid in Male Fischer 344 Rats, Food Chem. Toxicol. 36, 391–395.

    Article  PubMed  CAS  Google Scholar 

  45. Dugan, M.E.R., Aalhus, J.L., Schaefer, A.L., and Kramer, J.K.G. (1997) The Effect of Conjugated Linoleic Acid on Fat to Lean Repartitioning and Feed Conversion in Pigs, Can. J. Anim. Sci. 77, 723–725.

    Article  CAS  Google Scholar 

  46. Ide, T., Watanabe, M., Sugano, M., and Yamamoto, I. (1987) Activities of Liver Mitochondrial and Peroxisomal Fatty Acid Oxidation Enzymes in Rats Fed trans Fat, Lipids 22, 6–10.

    PubMed  CAS  Google Scholar 

  47. Park, Y., Albright, K.J., Liu, W., Cook, M.E., and Pariza, M.W. (1999) Changes in Body Composition in Mice During Feeding and Withdrawal of Conjugated Linoleic Acid, Lipids 34, 243–248.

    Article  PubMed  CAS  Google Scholar 

  48. Estabrook, R.W. (1967) Mitochondrial Respiratory Control and the Polarographic Measurement of ADP/O Ratios Meth. Enzymol. 10, 41–47.

    Article  CAS  Google Scholar 

  49. Lawson, L.D., and Holman, R.T. (1981) β-Oxidation of the Geometric and Positional Isomers of Octadecenoic Acid by Rat Heart and Liver Mitochondria, Biochim. Biophys. Acta 665, 60–65.

    PubMed  CAS  Google Scholar 

  50. Osmundsen, H., Braud, H., Beauseigneur, F., Gresti, J., Tsoko, M., and Clouet, P. (1998) Effects of Dietary Treatment of Rats with Eicosapentaenoic Acid or Docosahexaenoic Acid on Hepatic Lipid Metabolism, Biochem. J. 331, 153–160.

    PubMed  CAS  Google Scholar 

  51. Madsen, L., Froyland, L., Dyroy, E., Helland, K., and Berge, R.K. (1998) Docosahexaenoic and Eicosapentaenoic Acids Are Differently Metabolized in Rat Liver During Mitochondria and Peroxisome Proliferation, J. Lipid Res. 39, 583–593.

    PubMed  CAS  Google Scholar 

  52. Alexson, S.E.H., and Cannon, B. (1984) A Direct Comparison Between Peroxisomal and Mitochondrial Preferences for Fatty-Acyl β-Oxidation Predicts Channelling of Medium-Chain and Very-Long-Chain Unsaturated Fatty Acids to Peroxisomes, Biochim. Biophys. Acta 796, 1–10.

    PubMed  CAS  Google Scholar 

  53. Yamada, J., Ogawa, S., Horie, S., Watanabe, T., and Suga, T. (1987) Participation of Peroxisomes in the Metabolism of Xenobiotic Acyl Compounds: Comparison Between Peroxisomal and Mitochondrial β-Oxidation of ω-Phenyl Fatty Acids in Rat Livers, Biochim. Biophys. Acta 921, 292–301.

    PubMed  CAS  Google Scholar 

  54. Guzman, M., Klein, W., Gomez Del Pulgar, T., and Geelan, M. (1999) Metabolism of trans Fatty Acids by Hepatocytes, Lipids 34, 381–386.

    PubMed  CAS  Google Scholar 

  55. Osmundsen, H., Breler, J., and Pedersen, J.I. (1991) Metabolic Aspects of Peroxisomal β-Oxidation, Biochim. Biophys. Acta 1085, 141–158.

    PubMed  CAS  Google Scholar 

  56. Sébédio, J.L., Grégoire, S., Juanéda, P., Angioni, E., Chardigny, J.M., Martin, J.C., and Berdeaux, O. (1999) 9c,11t and 10t,12c Do Not Influence Similarly Fatty Acid Composition of Rat Tissue Lipids, presented at the 90th American Oil Chemists’ Society Meeting & Expo, May 1999, Orlando.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Charles Martin.

About this article

Cite this article

Martin, JC., Grégoire, S., Siess, MH. et al. Effects of conjugated linoleic acid isomers on lipid-metabolizing enzymes in male rats. Lipids 35, 91–98 (2000). https://doi.org/10.1007/s11745-000-0499-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-000-0499-9

Keywords

Navigation