Skip to main content
Log in

Formation and Growth of Micelles in Dilute Aqueous CTAB Solutions in the Presence of NaNO3 and NaClO3

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

Self-assembly of cetyltrimethylammonium bromide (CTAB) in aqueous solution, in the presence of two inorganic salts viz, NaNO3 and NaClO3 was investigated by steady-state fluorescence, electrical conductance, surface tension, viscosity, dynamic light scattering (DLS) and cryogenic transmission microscopy (cryo-TEM). The counterions located at short enough distances to CTA+ micellar surface experience a very strong electrostatic attraction and thus become condensed. This counterion condensation plays a significant role in deciding the effective charge on the micelle, their screening interaction and structural transition of the micelles. In the present work, the probable mechanism of the salts' action in aqueous solution of CTAB is explained. The critical micelle concentration (CMC), area per molecule (Å2), micelle hydrodynamic diameter (D h ), and aggregation number (N agg) of CTAB micelles in the absence and presence of the salts are reported. The addition of both salts followed the lyotropic series and showed a remarkable decrease in CMC. A detailed investigation of the structural transitions from spherical to rod or even to entangled wormlike structures is presented from cryoTEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Porter MR (1994) The handbook of surfactants, 2nd edn. Chapman & Hall, London

    Google Scholar 

  2. Rosen MJ (1989) Surfactants and interfacial phenomena, 2nd edn. Wiley, New York

    Google Scholar 

  3. Myers D (1988) Surfactant science and technology. VCH Publications, New York

    Google Scholar 

  4. Tanford C (1980) The hydrophobic effect. Formation of micelles and biological membranes. Wiley, New York

    Google Scholar 

  5. Jungermann E (1970) Cationic surfactants. Marcel Dekker, New York

    Google Scholar 

  6. Holland PM, Rubingh DN (1991) Cationic surfactants: physical chemistry. Marcel Dekker, New York

    Google Scholar 

  7. Kumar S, Aswal VK, Goyal PS, Kabir-ud-Din (1998) Micellar growth in the presence of quaternary ammonium salts A SANS study. J Chem Soc Faraday Trans 94(6):761–764

    Article  CAS  Google Scholar 

  8. Feitosa E, Brazolin M, Naal R, Lama M, Lopes JR, Loh W, Vasilescu M (2006) Structural organization of cetyltrimethylammonium sulfate in aqueous solution: the effect of Na2SO4. J Colloid Interface Sci 299:883–889

    Article  CAS  Google Scholar 

  9. Pokhriyal NK, Joshi JV, Goyal PS (2003) Viscoelastic behaviour of cetyl trimethyl ammonium bromide/sodium salicylate/water system: effect of solubilisation of different polarity oils. Colloids Surf A 218:201–212

    CAS  Google Scholar 

  10. Fujio K, Mitsui T, Kurumizawa H, Tanaka Y, Uzu Y (2004) Solubilization of a water insoluble dye in aqueous NaBr solutions of alkylpyridinium bromides and its relation to micellar size and shape. Colloid Polym Sci 282:223–229

    Article  CAS  Google Scholar 

  11. Kunieda H, Rodriguez C, Tanaka Y, Kabir H, Ishitobi M (2004) Effects of added nonionic surfactant and inorganic salt on the rheology of sugar surfactant and CTAB aqueous solutions. Colloids Surf B 38:127–130

    Article  CAS  Google Scholar 

  12. Skerjanc J, Kogej K, Cerar J (1999) Equilibrium and transport properties of alkylpyridinium bromides. Langmuir 15:5023–5028

    Article  CAS  Google Scholar 

  13. Sasaki M, Imae T, Ikeda S (1989) Aqueous sodium halide solutions of cationic surfactants with consolute phase boundary. Viscosity behavior in semidilute regime. Langmuir 5:211–215

    Article  CAS  Google Scholar 

  14. Kuperkar K, Abezgauz L, Danino D, Verma G, Hassan PA, Aswal VK, Varade D, Bahadur P (2008) Viscoelastic micellar water/CTAB/NaNO3 solutions: rheology, SANS and cryo-TEM analysis. J Colloid Interface Sci 323:403–409

    Article  CAS  Google Scholar 

  15. Maeda H, Yamamoto A, Souda M, Kawasaki H, Hossain KS, Nemoto N, Almgren M (2001) Effects of protonation on the viscoelastic properties of tetradecyl dimethylamine oxide micelles. J Phys Chem B 105:5411–5418

    Article  CAS  Google Scholar 

  16. Israelachvili JN, Mitchell DJ, Ninham BW (1976) Long-chain alcohol induced phase transition in lyotropic mixed polyoxyethylene-type surfactant liquid-crystals. J Chem Soc Faraday Trans 272:1525–1568

    Google Scholar 

  17. Turro N, Yekta A (1978) Luminescent probes for detergent solutions. A simple procedure for determination of the mean aggregation number of micelles. J Am Chem Soc 100:5951–5952

    Article  CAS  Google Scholar 

  18. Jiang N, Li P, Wang Y, Wang J, Yan H, Thomas RK (2005) Aggregation behavior of hexadecyltrimethylammonium surfactants with various counterions in aqueous solution. J Colloid Interface Sci 286:755–760

    Article  CAS  Google Scholar 

  19. Stam JV, Depaemelaere S, Schryver De (1998) Micellar aggregation numbers—a fluorescence study. J Chem Educ 75:93–98

    Article  Google Scholar 

  20. Aswal VK, Goyal PS, Thiyagarajan P (1998) Small-angle neutron-scattering and viscosity studies of CTAB/NaSal viscoelastic micellar solutions. J Phys Chem B 102:2469–2473

    Article  CAS  Google Scholar 

  21. Knock MM, Bain CD (2000) Effect of counterion on monolayers of hexadecyl-trimethylammonium halides at the air-water interface. Langmuir 16:2857–2865

    Article  CAS  Google Scholar 

  22. Vethamuthu MS, Almgren M, Mukhtar E, Bahadur P (1992) Fluorescence quenching studies of the aggregation behavior of the mixed micelles of bile salts and cetyltrimethylammonium halides. Langmuir 8:2396–2404

    Article  CAS  Google Scholar 

  23. Bostrom M, Williams DRM, Ninham BW (2002) The influence of ionic dispersion potentials on counterion condensation on polyelectrolytes. J Phys Chem B 106:7908–7912

    Article  Google Scholar 

  24. Para G, Jarek E, Warszynski P (2006) The Hofmeister series effect in adsorption of cationic surfactants-theoretical description and experimental results. Adv Colloid Interface Sci 122:39–55

    Article  CAS  Google Scholar 

  25. Zhang Y, Cremer PS (2006) Interactions between macromolecules and ions: the Hofmeister series. Curr Opin Colloid Interface Sci 10:658–663

    CAS  Google Scholar 

  26. Cappelaere E, Cressely R (2000) Influence of NaClO3 on the rheological behaviour of a micellar solution of CPCL. Rheol Acta 39:346–353

    Article  CAS  Google Scholar 

  27. Carnero Ruiz C, Aguiar J (2000) Interaction, stability, and microenvironmental properties of mixed micelles of Triton X100 and n-ealkyltrimethylammonium bromides: influence of alkyl chain length. Langmuir 16:7946–7953

    Article  Google Scholar 

  28. Van Os NM, Haak JR, Rupert LAM (1993) Physico-chemical properties of selected anionics, cationics and non-ionic surfactants. Elsevier, Amsterdam

    Google Scholar 

  29. Para G, Jarek E, Warszynski P (2005) The surface tension of aqueous solutions of cetyltrimethylammonium cationic surfactants in presence of bromide and chloride counterions. Colloids Surf A 261:65–73

    Article  CAS  Google Scholar 

  30. Graciani MM, Muñoz M, Rodrı´guez A, Moya ML (2005) Water-N, N-Dimethyl formamide alkyltrimethylammonium bromide micellar solutions: Thermodynamic, Structural, and Kinetic Studies. Langmuir 21:3303–3310

    Article  CAS  Google Scholar 

  31. Bhat M, Gaikar VG (1999) Characterization of interaction between butyl benzene sulfonates and cetyl trimethylammonium bromide in mixed aggregate systems. Langmuir 15:4740–4751

    Article  CAS  Google Scholar 

  32. Mata J, Varade D, Bahadur P (2005) Aggregation behavior of quaternary salt based cationic surfactants. Thermochimica Acta 428:147–155

    Article  CAS  Google Scholar 

  33. Brown W, Johansson K, Almgren M (1989) Threadlike micelles from cetyltrimethylammonium bromide in aqueous sodium naphthalene sulfonate solutions studied by static and dynamic light scattering. J Phys Chem 93:5888–5894

    Article  Google Scholar 

  34. Kalyanasundaram K (1987) Photochemistry in microheterogenous systems. Academic Press, San Diego

    Google Scholar 

  35. Kalyanasundaram K, Thomas JK (1977) Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J Am Chem Soc 99:2039–2044

    Article  CAS  Google Scholar 

  36. Aguiar J, Carpena P, Molina-Bolivar JA, Carnero Ruiz C (2003) On the determination of the critical micelle concentration by the pyrene 1:3 ratio method. J Colloid Interface Sci 258:116–122

    Article  CAS  Google Scholar 

  37. Yoshimura T, Yoshida H, Ohno A, Esumi K (2003) Physicochemical properties of quaternary ammonium bromide-type trimeric surfactants. J Colloid Interface Sci 267:167–172

    Article  CAS  Google Scholar 

  38. Gonzalez YI, Kaler EW (2005) Cryo-TEM studies of worm-like micellar solutions. Curr Opin Colloid Interface Sci 10:256–260

    Article  CAS  Google Scholar 

  39. Majid LJ, Gee JC, Talmon Y (1990) A cryogenic transmission electron microscopy study of counterion effects on hexadecyltrimethylammonium dichlorobenzoate micelles. Langmuir 6:1609–1613

    Article  Google Scholar 

  40. Lin Z, Zheng Y, Davis HT, Scriven LE, Talmon Y, Zakin JL (2000) Unusual effects of counterion to surfactant concentration ratio on viscoelasticity of a cationic surfactant drag reducer. J Non-Newtonian Fluid Mech 93:363–373

    Article  CAS  Google Scholar 

  41. Danino D, Bernheim-Groswasser A, Talmon Y (2001) Digital cryogenic transmission electron microscopy: an advanced tool for direct imaging of complex fluids. Colloid Surf A 183:113–122

    Article  Google Scholar 

  42. Cui H, Hodgdon TK, Kaler EW, Abezgauz L, Danino D, Lubovsky M, Talmon Y, Pochan DJ (2007) Elucidating the assembled structure of amphiphiles in solution via cryogenic transmission electron microscopy. Soft Matter 3(8):945–955

    Article  CAS  Google Scholar 

  43. Danino D, Talmon Y, Zana R (2000) Cryo-TEM of thread-like micelles: on-the-grid microstructural transformations induced during specimen preparation. Colloids Surf A 169:67–73

    Article  CAS  Google Scholar 

  44. Abezgauz L, Kuperkar K, Hassan PA, Bahadur P, Danino D (2010) Effect of inorganic counterions on the microstructure of cetylpyridinium chloride micelles. J Colloid Interface Sci 342:83–92

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof D Danino for help in cryoTEM and Dr. P. A. Hassan, BARC for providing DLS facility. Financial support from CSIR New Delhi (Project No. 01(2068)/06/EMR-II) to PB is gratefully acknowledged. Ketan Kuperkar thanks CSIR for the award of aSenior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ketan Kuperkar.

About this article

Cite this article

Kuperkar, K., Abezgauz, L., Prasad, K. et al. Formation and Growth of Micelles in Dilute Aqueous CTAB Solutions in the Presence of NaNO3 and NaClO3 . J Surfact Deterg 13, 293–303 (2010). https://doi.org/10.1007/s11743-009-1173-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-009-1173-z

Keywords

Navigation