Skip to main content
Log in

Novel glucose-derived gemini surfactants with a 1,1′-ethylenebisurea spacer: Preparation, thermotropic behavior, and biological properties

  • Published:
Journal of Surfactants and Detergents

Abstract

In the search for environmentally safe surfactants made from inexpensive and renewable sources, the interest has mainly been focused on new saccharide derivatives. This report describes the synthesis of newly designed nonionic gemini compounds comprising two reduced sugar headgroups, two alkyl tails, and a 1,1′-ethylenebisurea entity as the spacer linking two amphiphilic glucose-derived moieties. Thus, the series of N,N′-bis[(3-alkyl-3-deoxy-d-glucitol)ureido]ethylenediamines (bis(CnGT), with Cn=n-C9H9, n-C6-H13, n-C8H17, n-C10H21, or n-C12H25), were prepared using a convenient procedure starting from easily accessible reagents such as d-glucose, n-alkylamines, urea, and ethylenediamine. Their structure and purity were confirmed by means of elemental analysis, electrospray ionization mass spectrometry, and 1H and 13C nuclear magnetic resonance spectroscopy. Additionally, the present contribution introduces selected properties of these surfactants, including their thermotropic behavior and biological properties. The presence of two phase transition points, determined using the differential scanning calorimetry method, indicates liquid-crystalline mesophase formation upon heating. Furthermore, using the closed-bottle test (OECD Guideline 301D) as well as the biological oxygen demand test for insoluble substances for biodegradability measurements, it has been concluded that the tested glucose-derived gemini structures achieve more than 60% biodegradation after 64–75 test days. All tested surfactants were practically nontoxic to bacteria, yeast, and molds. Owing to their fitting aggregation ability as well as their nontoxicity, they constitute an interesting group of surfactants for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

bis(CnCT):

N,N′-bis[3-alkyl-3-deoxy-D-glucitol) ureido]ethylenediamines

BOD:

biological oxygen demand

BODIS:

biological oxygen demand test for insoluble substances

cfu:

colony forming units

DSC:

differential scanning calorimetry

ESI-MS:

electrospray ionization mass spectrometry

MIC:

minimal inhibitory concentration

NMR:

nuclear magnetic resonance

PCM:

Polish Collection of Microorganisms

TOD:

theoretical oxygen demand

References

  1. Luk, Y.-Y., and N.L. Abbott, Application of Functional Surfactants, Curr. Opin. Colloid Interface Sci. 7:267 (2002).

    Article  CAS  Google Scholar 

  2. Chevalier, Y., New Surfactants: New Chemical Functions and Molecular Architectures, Curr. Opin. Colloid Interface Sci. 7:3 (2002).

    Article  CAS  Google Scholar 

  3. Söderman, O., and I. Johansson, Polyhydroxyl-Based Surfactants and Their Physico-Chemical Properties and Applications, Curr. Opin. Colloid Interface Sci. 4:391 (2000).

    Article  Google Scholar 

  4. Stubenrauch, C., Sugar surfactants-Aggregation, Interfacial, and Adsorption Phenomena, Curr. Opin. Colloid Interface Sci. 6:160 (2001).

    Article  CAS  Google Scholar 

  5. Burczyk, B., Novel Saccharide-Based Surfactants, in Novel Surfactants. Preparation, Applications, and Biodegradability, 2nd ed., edited by K. Holmberg, Marcel Dekker, New York, 2003, p. 129–192.

    Google Scholar 

  6. Maliszewska, I., K.A. Wilk, B. Burczyk, and L. Syper, Antimicrobial Activity and Biodegradability of N-Akylaldonamides, Progr. Colloid Polym. Sci. 118:172 (2001).

    Article  CAS  Google Scholar 

  7. Wilk, K.A., L., Syper, B. Burczyk, I. Maliszewska, M. Jon, and B.W. Domagalska, Preparation and Properties of New Lactose-Based Surfactants, J. Surfact. Deterg. 4:155 (2001).

    CAS  Google Scholar 

  8. Syper, L., K.A. Wilk, A. SokoÁowski, and B. Burczyk, Synthesis and Surface Properties of N-Alkylaldonamides, Progr. Colloid Polym. Sci. 110:199 (1998).

    CAS  Google Scholar 

  9. Burczyk, B., L. Syper, and K.A. Wilk, New Surface Active Aldonamides and Their Preparation, Polish Patent Application P. 331294, 1999.

  10. Burczyk, B., K.A. Wilk, A. SokoÁowski, and L. Syper, Synthesis and Surface Properties of N-Alkyl-N-methylgluconamides and N-Alkyl-N-methyllactobionamides, J. Colloid Interface Sci. 240:552 (2001).

    Article  CAS  Google Scholar 

  11. Wilk, K.A., L. Syper, B. Burczyk, A. SokoÁowski, and B.W. Domagalska, Synthesis and Surface Properties of New Dicephalic Saccharide-Derived Surfactants, J. Surfact. Deterg. 3: 185 (2000).

    CAS  Google Scholar 

  12. Eastoe, J., P. Rogueda, B.J. Harrison, A.M. Howe, and A.R. Pitt, Properties of a Dichained “Sugar Surfactant”, Langmuir 10:4429 (1994).

    Article  CAS  Google Scholar 

  13. Eastoe, J., P. Rogueda, A.M. Howe, A.R. Pitt, and R.K. Heenan, Properties of New Glucamide Surfactants, Langmuir 12:2701 (1996).

    Article  CAS  Google Scholar 

  14. Briggs, C.B.A., I.M. Newington, and A.R. Pitt, Synthesis and Properties of Some Novel Nonionic Polyol Surfactants, J. Chem. Soc., Chem. Commun. 3:379 (1995).

    Article  Google Scholar 

  15. Kjellin, U.R.M., P.M. Claesson, and E.N. Vulfson, Studies of N-Dodecyllactobionamide, Maltose 6′-O-Dodecanoate, and Octyl-β-glucoside with Surface Tension, Surface Force, and Wetting Technique, Langmuir 17:1941 (2001).

    Article  CAS  Google Scholar 

  16. Claesson, P.M., and U.R.M. Kjellin, Sugar Surfactans, in Encyclopedia of Surface and Colloid Science, Marcel Dekker New York, 2002, p. 4909–4925.

    Google Scholar 

  17. Rico-Lattes, I., and A. Lattes, Synthesis of New Sugar-Based Surfactants Having Biological Applications: Key Role of Their Self-Association, Colloids Surf. A 123–124:37 (1997).

    Article  Google Scholar 

  18. Castro, M.J.L., J. Kovensky, and A.F. Girelli, Gemini Surfactants from Alkyl Glucosides, Tetrahedron Lett. 38:3995 (1997).

    Article  CAS  Google Scholar 

  19. Castro, M.J.L., J. Kovensky, and A.F. Girelli, New Dimeric Surfactants from Alkyl Glucosides, Tetrahedron 55:12711 (1999).

    Article  CAS  Google Scholar 

  20. Gao, C., A. Millqvist-Fureby, M.J. Whitcombe, and E.N. Vulfson, Regioselective Synthesis of Dimeric (gemini) and Trimeric Sugar-Based Surfactants, J. Surfact. Deterg. 2:293 (1999).

    CAS  Google Scholar 

  21. Gao, C., M.J. Whitcombe, and E.N. Vulfson, Enzymatic Synthesis of Dimeric and Trimeric Sugar-Fatty Acid Esters, Enzyme Microb. Technol. 25:264 (1999).

    Article  CAS  Google Scholar 

  22. Wilk, K.A., L. Syper, B.W. Domagalska, U. Laska, I. Maliszewska, and R. Gancarz, Aldonamide-Type Gemini Surfactants: Synthesis, Structural Analysis and Biological Properties, J. Surfact. Deterg. 5:235 (2002).

    Article  CAS  Google Scholar 

  23. Laska, U., and K.A. Wilk, Surface and Micellar Properties of New Nonionic Gemini Aldonamide-Type Surfactants, J. Colloid Interface Sci. 271:206 (2004).

    Article  CAS  Google Scholar 

  24. Fielden, M.L., C. Perrin, A. Kremer, M. Bergsma, M.C. Stuart, P. Camilleri, and J.B.F.N., Engberts, Sugar-Based Tertiary Amino Gemini Surfactants with a Vesicle-to-Micelle Transition in the Endosomal pH Range Mediate Efficient Transfection in vitro, Eur. J. Biochem. 268:1269 (2001).

    Article  CAS  Google Scholar 

  25. Johnsson, M., A. Wagenaar, and J.B.F.N. Engberts, Sugar-Based Gemini Surfactants with a Vesicle-to-Micelle Transition at Acidic pH and a Reversible Vesicle Flocculation Near Neutral pH, J. Am. Chem. Soc. 125:757 (2003).

    Article  CAS  Google Scholar 

  26. van Doren, H.A., E. Smits, J.M. Pestman, J.B.F.N. Engberts, and R.M. Kellogg, Mesogenic Sugars. From Aldoses to Liquid Crystals and Surfactants, Chem. Soc. Rev. 29:175 (2000).

    Article  Google Scholar 

  27. Syper, L., K.A. Wilk, and B. Matuszweska, Preparation Method for Nonionic Sugar Surfactants, Polish Patent Application P-347346, 2001.

  28. Syper, L., K.A. Wilk, and B. Matuszewska, Preparation Method for Bisalkonoylbisglucamines, Polish Patent Application P347345, 2001.

  29. Pestman, J.M., K.R. Terpstra, M.C.A. Stuart, H.A. van Doren, A. Brisson, R.M. Kellogg, and J.B.F.N. Engberts, Nonionic Bolaamphiphiles and Gemini Surfactants Based on Carbohydrates, Langmuir 13:6857 (1997).

    Article  CAS  Google Scholar 

  30. Begsma, M., M.L. Fielden, and J.B.N.F. Engberts, pH-Dependent Aggregation Behavior of a Sugar-Amine Gemini Surfactant in Water: Vesicles, Micelles, and Monolayers of Hexane-1,6-bis(hyxadecyl-1′-deoxyglucitylamine), J. Colloid Interface Sci. 243:491 (2001).

    Article  CAS  Google Scholar 

  31. van Eijk, M.C.P., M. Bergsma, and S.-J. Marrink, Association Behaviour of Glucitol Amine Gemini Surfactants. Self-Consistent-Field Theory and Molecular-Dynamics Simulations, Eur. Phys. J. E 7:317 (2002).

    Google Scholar 

  32. Gronwald, O., E. Snip, and S. Shinkai, Gelators for Organic Liquids Based on Self-Assembly: A New Facet of Supramolecular and Combinatorial Chemistry, Curr. Opin. Colloid Interface Sci. 7:148 (2002).

    Article  CAS  Google Scholar 

  33. Bachmann, W.E., W.J. Horton, E.L. Jenner, N.W. MacNaughton, and C.E. Maxwell, The Nitration of Derivatives of Ethylenediamine, J. Am. Chem. Soc. 72:3132 (1950).

    Article  CAS  Google Scholar 

  34. Bristline, R.G., E.W. Maurer, F.D. Smith, and W.M. Linfield, Fatty Acid Amides and Anilides, Synthesis and Antimicrobial Properties, J. Am. Oil Chem. Soc. 57:98 (1980).

    Google Scholar 

  35. Organization for Economic Cooperation and Development, Guidelines for Testing Chemicals: Closed-Bottle Test No. 301D, 1981.

  36. Richterich, K., H. Berger, and J. Steber, Determination of “Ready Biodegradability” of Poorly Soluble Compounds with the “Two-Phase Closed Bottle Test”, Henkel Referate 35:47 (1999).

    Google Scholar 

  37. Ginkel, C.G., and C.A. Stroo, Simple Method to Prolong the Closed Bottle Test for the Determination of the Inherent Biodegradability, Ecotox Environ. Saf. 24:319 (1992).

    Article  Google Scholar 

  38. Tundo, P., P. Anastas, D. StC. Black, J. Breen, T. Collins, S. Memoli, J. Miyamoto, M. Polyakoff, and W. Tumas, Synthetic Pathways and Processes in Green Chemistry. Introductory overview, Pure Appl. Chem. 72:1207 (2000).

    CAS  Google Scholar 

  39. Retailleau, L., A. Laplace, H. Fensterbank, and C. Larpent, Synthesis, Structural Analysis, and Properties of N-Alkylglucosyl (meth)acrylamides: New Reactive Sugar Surfactants, J. Org. Chem. 63:608 (1998).

    Article  CAS  Google Scholar 

  40. Zhang, T., and R.E. Marchant, Novel Polysaccharide Surfactants: The Effect of Hydrophobic and Hydrophilic Chain Length on Surface Active Properties, J. Colloid Interface Sci. 177:419 (1996).

    Article  CAS  Google Scholar 

  41. Coppola, L., A. Gordano, A. Procopio, and G. Sindona, Phase Equilibria and Physical-Chemical Properties of Sugar-Based Surfactants in Aqueous Solutions, Colloids Surf. A 196:175 (2002).

    Article  CAS  Google Scholar 

  42. Jeffrey, G.A., and L.A. Wingert, Carbohydrate Liquid Crystals, Liq. Cryst. 12:179 (1992).

    CAS  Google Scholar 

  43. van Doren, H.A., and K.R. Terpstra, Structure-Property Relationships in D-Glucitol Derivatives with Two Geminal Hydrocarbon Chains, J. Mater. Chem. 5:2153 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Wilk.

About this article

Cite this article

Laska, U., Wilk, A., Maliszewska, I. et al. Novel glucose-derived gemini surfactants with a 1,1′-ethylenebisurea spacer: Preparation, thermotropic behavior, and biological properties. J Surfact Deterg 9, 115–124 (2006). https://doi.org/10.1007/s11743-006-0380-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-006-0380-0

Key Words

Navigation