Skip to main content
Log in

TP receptor activation and inhibition in atherothrombosis: the paradigm of diabetes mellitus

  • IM - Review
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

Patients with type 2 diabetes mellitus are characterized by increased incidence of cardiovascular events and enhanced thromboxane-dependent platelet activation. Urinary enzymatic TXA2 metabolites (such as 11-dehydro-TXB2), reflecting the whole TXA2 biosynthesis by platelet and extra-platelet sources, are significantly increased in diabetes with the absolute post-aspirin values of 11-dehydro-TXB2 in diabetics being comparable to non-aspirated controls and such residual TXA2 biosynthesis despite low-dose aspirin treatment is predictive of vascular events in high-risk patients. Thus, elevated urinary 11-dehydro-TXB2 levels identify patients who are partially insensitive to aspirin and who may benefit from alternative antiplatelet therapies or treatments that more effectively block in vivo TXA2 production or activity. Potential mechanisms relatively insensitive to aspirin include extraplatelet, nucleate sources of TXA2 biosynthesis, possibly triggered by inflammatory stimuli, or lipid peroxidation with enhanced generation of F2-isoprostane (reflecting ongoing in vivo oxidative stress) than can activate platelets via the platelet TP receptor thus escaping inhibition by aspirin. In fact, aspirin does not inhibit isoprostane formation. Moreover, intraplatelet or extraplatelet thromboxane generation may be only partly inhibited by aspirin under certain pathological conditions, at least at the usual low doses given for cardiovascular protection. TXA2 receptors (TP) are expressed on several cell types and exert antiatherosclerotic, antivasoconstrictive and antithrombotic effects, depending on the cellular target. Thus, targeting TP receptor, a common downstream pathway for both platelet and extraplatelet TXA2 as well as for isoprostanes, may be an useful antithrombotic intervention in clinical settings, such as diabetes mellitus characterized by persistently enhanced thromboxane-dependent platelet activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schramm TK, Gislason GH, Kober L et al (2008) Diabetes patients requiring glucose-lowering therapy and nondiabetics with a prior myocardial infarction carry the same cardiovascular risk: a population study of 3.3 million people. Circulation 117:1945–1954

    Article  PubMed  CAS  Google Scholar 

  2. Ferroni P, Basili S, Falco A, Davì G (2004) Platelet activation in type 2 diabetes mellitus. J Thromb Haemost 2:1282–1291

    Article  PubMed  CAS  Google Scholar 

  3. Davì G, Catalano I, Averna M, Notarbartolo A, Strano A, Ciabattoni G, Patrono C (1990) Thromboxane biosynthesis and platelet function in type II diabetes mellitus. N Engl J Med 322:1769–1774

    Article  PubMed  Google Scholar 

  4. Watala C, Boncler M, Gresner P (2005) Blood platelet abnormalities and pharmacological modulation of platelet reactivity in patients with diabetes mellitus. Pharmacol Rep 57(Suppl):S42–58

    Google Scholar 

  5. Eikelboom JW, Hirsh J, Weitz JI, Johnston M, Yi Q, Yusuf S (2002) Aspirin-resistant thromboxane biosynthesis and the risk of myocardial infarction, stroke, or cardiovascular death in patients at high risk for cardiovascular events. Circulation 105:1650–1655

    Article  PubMed  CAS  Google Scholar 

  6. Antithrombotic Trialists’ (ATT) Collaboration, Baigent C, Blackwell L, Collins R et al (2009) Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet 373:1849–1860

  7. Ushikubi F, Nakajima M, Hirata M, Okuma M, Fujiwara M, Narumiya S (1989) Purification of the thromboxane A2/prostaglandin H2 receptor from human blood platelets. J Biol Chem 264:16496–16501

    PubMed  CAS  Google Scholar 

  8. Davì G, Patrono C (2007) Platelet activation and atherothrombosis. N Engl J Med 357:2482–2494

    Article  PubMed  Google Scholar 

  9. Patrono C, García Rodríguez LA, Landolfi R, Baigent C (2005) Low-dose aspirin for the prevention of atherothrombosis. N Engl J Med 353:2373–2383

    Article  PubMed  CAS  Google Scholar 

  10. Nakahata N (2008) Thromboxane A2: physiology/pathophysiology, cellular signal transduction and pharmacology. Pharmacol Ther 118:18–35

    Article  PubMed  CAS  Google Scholar 

  11. Kobayashi T, Tahara Y, Matsumoto M et al (2004) Roles of thromboxane A2 and prostacyclin in the development of atherosclerosis in apoE-deficient mice. J Clin Invest 114:784–794

    PubMed  CAS  Google Scholar 

  12. Yun DH, Song HY, Lee MJ et al (2009) Thromboxane A2 modulates migration, proliferation, and differentiation of adipose tissue-derived mesenchymal stem cells. Exp Mol Med 41:17–24

    Article  PubMed  CAS  Google Scholar 

  13. Daniel TO, Liu H, Morrow JD, Crews BC, Marnett LJ (1999) Thromboxane A2 is a mediator of cyclooxygenase-2-dependent endothelial migration and angiogenesis. Cancer Res 59:4574–4577

    PubMed  CAS  Google Scholar 

  14. Pakala R, Willerson JT, Benedict CR (1997) Effect of serotonin, thromboxane A2, and specific receptor antagonists on vascular smooth muscle cell proliferation. Circulation 96:2280–2286

    PubMed  CAS  Google Scholar 

  15. Mehta P, Mehta J, Lawson D, Krop I, Letts LG (1986) Leukotrienes potentiate the effects of epinephrine and thrombin on human platelet aggregation. Thromb Res 41:731–738

    Article  PubMed  CAS  Google Scholar 

  16. Mayeux PR, Morton HE, Gillard J et al (1988) The affinities of prostaglandin H2 and thromboxane A2 for their receptor are similar in washed human platelets. Biochem Biophys Res Commun 157:733–739

    Article  PubMed  CAS  Google Scholar 

  17. Breyer RM, Bagdassarian CK, Myers SA, Breyer MD (2001) Prostanoid receptors: subtypes and signaling. Annu Rev Pharmacol Toxicol 41:661–690

    Article  PubMed  CAS  Google Scholar 

  18. Habib A, FitzGerald GA, Maclouf J (1999) Phosphorylation of the thromboxane receptor α, the predominant isoform expressed in human platelets. J Biol Chem 274:2645–2651

    Article  PubMed  CAS  Google Scholar 

  19. Hirata T, Ushikubi F, Kakizuka A, Okuma M, Narumiya S (1996) Two thromboxane A2 receptor isoforms in human platelets. Opposite coupling to adenylcyclase with different sensitivity to Arg60 to Leu mutation. J Clin Invest 97:949–956

    Article  PubMed  CAS  Google Scholar 

  20. Zuccollo A, Shi C, Mastroianni R et al (2005) The thromboxane A2 receptor antagonist S18886 prevents enhanced atherogenesis caused by diabetes mellitus. Circulation 112:3001–3008

    PubMed  CAS  Google Scholar 

  21. Gaussem P, Reny JL, Thalamas C et al (2005) The specific thromboxane receptor antagonist S18886: pharmacokinetic and pharmacodynamic studies. J Thromb Haemost 3:1437–1445

    Article  PubMed  CAS  Google Scholar 

  22. Chamorro A (2009) TP receptor antagonism: a new concept in atherothrombosis and stroke prevention. Cerebrovasc Dis 27(Suppl):20–27

    Article  PubMed  CAS  Google Scholar 

  23. Egan KM, Wang M, Lucitt MB et al (2005) Cyclooxygenases, thromboxane, and atherosclerosis: plaque destabilization by cyclooxygenase-2 inhibition combined with thromboxane receptor antagonism. Circulation 111:334–342

    Article  PubMed  CAS  Google Scholar 

  24. Cheng Y, Austin SC, Rocca B et al (2002) Role of prostacyclin in the cardiovascular response to thromboxane A2. Science 296:539–541

    Article  PubMed  CAS  Google Scholar 

  25. Zou MH, Shi C, Cohen RA (2002) High glucose via peroxynitrite causes tyrosine nitration and inactivation of prostacyclin synthase that is associated with thromboxane/prostaglandin H2 receptor-mediated apoptosis and adhesion molecule expression in cultured human aortic endothelial cells. Diabetes 51:198–203

    Article  PubMed  CAS  Google Scholar 

  26. Neri Serneri GG, Coccheri S, Marubini E, Violi F (2004) Drug evaluation in atherosclerotic vascular disease in diabetics (DAVID) study group picotamide: a combined inhibitor of thromboxane A2 synthase and receptor, reduces 2-year mortality in diabetics with peripheral arterial disease: the DAVID study. Eur Heart J 25:1845–1852

    Article  PubMed  CAS  Google Scholar 

  27. Violi F, Hiatt W (2007) A critical review of antiplatelet treatment in peripheral arterial disease. Intern Emerg Med 2:84–87

    Article  PubMed  CAS  Google Scholar 

  28. Davì G, Gresele P, Violi F et al (1997) Diabetes mellitus, hypercholesterolemia, and hypertension but not vascular disease per se are associated with persistent platelet activation in vivo. Evidence derived from the study of peripheral arterial disease. Circulation 96:69–75

    PubMed  Google Scholar 

  29. Gresele P, Guglielmini G, De Angelis M et al (2003) Acute, short-term hyperglycemia enhances shear stress-induced platelet activation in patients with type II diabetes mellitus. J Am Coll Cardiol 41:1013–1020

    Article  PubMed  CAS  Google Scholar 

  30. The DECODE Study Group (1999) Glucose tolerance and mortality: comparison of WHO and American Diabetes Association diagnostic criteria. Lancet 354:617–621

    Google Scholar 

  31. Patrono C, Falco A, Davì G (2005) Isoprostane formation and inhibition in atherothrombosis. Curr Opin Pharmacol 5:198–203

    Article  PubMed  CAS  Google Scholar 

  32. Davì G, Falco A (2005) Oxidant stress, inflammation and atherogenesis. Lupus 14:760–764

    Article  PubMed  Google Scholar 

  33. Davì G, Ciabattoni G, Consoli A et al (1999) In vivo formation of 8-iso-prostaglandinF2alpha and platelet activation in diabetes mellitus: effects of improved metabolic control and vitamin E supplementation. Circulation 99:224–229

    PubMed  Google Scholar 

  34. Vazzana N, Santilli F, Cuccurullo C, Davì G (2009) Soluble forms of RAGE in internal medicine. Intern Emerg Med 4:389–401

    Article  PubMed  Google Scholar 

  35. Devangelio E, Santilli F, Formoso G et al (2007) Soluble RAGE in type 2 diabetes: association with oxidative stress. Free Radic Biol Med 43:511–518

    Article  PubMed  CAS  Google Scholar 

  36. Santilli F, Davì G, Consoli A et al (2006) Thromboxane-dependent CD40 ligand release in type 2 diabetes mellitus. J Am Coll Cardiol 47:391–397

    Article  PubMed  CAS  Google Scholar 

  37. Di Minno G, Silver MJ, Cerbone AM, Murphy S (1986) Trial of repeated low-dose aspirin in diabetic angiopathy. Blood 68:886–891

    CAS  Google Scholar 

  38. FitzGerald GA, Patrono C (2001) The coxibs, selective inhibitors of cyclooxygenase-2. N Engl J Med 345:433–442

    Article  PubMed  CAS  Google Scholar 

  39. Watala C, Pluta J, Golanski J et al (2005) Increased protein glycation in diabetes mellitus is associated with decreased aspirin-mediated protein acetylation and reduced sensitivity of blood platelets to aspirin. J Mol Med 83:148–158

    Article  PubMed  CAS  Google Scholar 

  40. American Diabetes Association (2010) Standards of medical care in diabetes. Diabetes Care 33(Suppl):S11–61

    Google Scholar 

  41. Antithrombotic Trialists’ Collaboration (2002) Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ 324:71–86

    Google Scholar 

  42. Haynes R, Bowman L, Armitage J (2009) Aspirin for primary prevention of vascular disease in people with diabetes. BMJ 339:1210–1211

    Article  Google Scholar 

  43. Rocca B, Patrono C (2005) Determinants of the interindividual variability in response to antiplatelet drugs. J Thromb Haemost 3:1597–1602

    Article  PubMed  CAS  Google Scholar 

  44. Angiolillo DJ, Bernardo E, Ramírez C et al (2006) Insulin therapy is associated with platelet dysfunction in patients with type 2 diabetes mellitus on dual oral antiplatelet treatment. Am J Cardiol 97:38–43

    Article  PubMed  CAS  Google Scholar 

  45. Singla A, Antonino MJ, Bliden KP, Tantry US, Gurbel PA (2009) The relation between platelet reactivity and glycemic control in diabetic patients with cardiovascular disease on maintenance aspirin and clopidogrel therapy. Am Heart J 158:784.e1–784.e6

    Article  Google Scholar 

  46. Di Chiara J, Bliden KP, Tantry US et al (2007) The effect of aspirin dosing on platelet function in diabetic and nondiabetic patients: an analysis from the aspirin-induced platelet effect (ASPECT) study. Diabetes 56:3014–3019

    Article  CAS  Google Scholar 

  47. Santilli F, Rocca B, De Cristofaro R et al (2009) Platelet cyclooxygenase inhibition by low-dose aspirin is not reflected consistently by platelet function assays: implications for aspirin “resistance”. J Am Coll Cardiol 53:667–677

    Article  PubMed  CAS  Google Scholar 

  48. Giustina A, Perini P, Desenzani P et al (1998) Long-term treatment with the dual antithromboxane agent picotamide decreases microalbuminuria in normotensive type 2 diabetic patients. Diabetes 47:423–430

    Article  PubMed  CAS  Google Scholar 

  49. Bousser MG, Amarenco P, Chamorro A, Fisher M, Ford I, Fox K, Hennerici M, Mattle HP, Rothwell PM, PERFORM Study Investigators (2009) Rationale and design of a randomized, double-blind, parallel-group study of terutroban 30 mg/day versus aspirin 100 mg/day in stroke patients: the prevention of cerebrovascular and cardiovascular events of ischemic origin with terutroban in patients with a history of ischemic stroke or transient ischemic attack (PERFORM) study. Cerebrovasc Dis 27:509–518

  50. Guthikonda S, Lev EI, Patel R et al (2007) Reticulated platelets and uninhibited COX-1 and COX-2 decrease the antiplatelet effects of aspirin. J Thromb Haemost 5:490–496

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Davì.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santilli, F., Mucci, L. & Davì, G. TP receptor activation and inhibition in atherothrombosis: the paradigm of diabetes mellitus. Intern Emerg Med 6, 203–212 (2011). https://doi.org/10.1007/s11739-010-0440-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11739-010-0440-3

Keywords

Navigation