Skip to main content

Advertisement

Log in

Stroke Volume Variation as a Guide to Fluid Administration in Morbidly Obese Patients Undergoing Laparoscopic Bariatric Surgery

  • Clinical Research
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

Perioperative fluid administration in morbidly obese patients is critical. There is scarcity of scientific information in literature on amount and rate of its application. Functional parameters (stroke volume variation (SVV), pulse pressure variation) are considered more accurate predictor of volume status of patients than blood pressure and central venous pressure.

Methods

SVV was used as a guide for intraoperative fluid administration in 50 morbidly obese patients subjected to bariatric surgery. Pulse contour waveform analysis (LiDCO Cardiac Sensor System, UK Company Regd. 2736561, VAT Regd. 672475708) was utilized to monitor SVV, and a value more than 10% was used as infusion trigger for intraoperative fluid management.

Results

Mean amount of fluid infused was 1,989.90 ml (±468.70 SD) for mean 206.94 min (±50.30 SD) duration of surgery. All patients maintained hemodynamic parameters (cardiac output, cardiac index, stroke volume, noninvasive blood pressure, heart rate) within 10% of the baseline values. Central venous pressure and SVV showed no correlation, except for short period initially. Renal and metabolic indices remained within normal limits.

Conclusion

Obese patients coming for laparoscopic bariatric surgery may not require excessive fluid. Intraoperative fluid requirement is the same as for nonobese patients. SVV is a valuable guide for fluid application in obese patients undergoing bariatric surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ogunnaike BO, Jones SB, Jones DB, et al. Anesthetic considerations for bariatric surgery. Anesth Analg. 2002;95:1793–805.

    Article  PubMed  Google Scholar 

  2. Chappell D, Jecob M, Hofmann-Kiefer K, et al. A rational approach to perioperative fluid management. Anesthesiology. 2008;109:723–40.

    Article  PubMed  Google Scholar 

  3. Osman D, Ridel C, Ray P, et al. Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med. 2007;35:64–8.

    Article  PubMed  Google Scholar 

  4. Beaussier M, Coriat P, Perel A, et al. Determinants of systolic pressure variation in patients ventilated after vascular surgery. J Cardiothorac Vasc Anesth. 1995;9(5):547–51.

    Article  PubMed  CAS  Google Scholar 

  5. Berkenstadt H, Margalit N, Hadani M, et al. Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth Analg. 2001;92:984–9.

    Article  PubMed  CAS  Google Scholar 

  6. Reuter DA, Felbinger TW, Schmidt C, et al. Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med. 2002;28:392–8.

    Article  PubMed  Google Scholar 

  7. Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients. Chest. 2002;121:2000–8.

    Article  PubMed  Google Scholar 

  8. Marik PE, Baram M. Non invasive hemodynamic monitoring in the intensive care unit. Crit Care Clin. 2007;23:383–400.

    Article  PubMed  CAS  Google Scholar 

  9. Vincet JL, Sakr Y, Sprung CL, et al. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34:344–53.

    Article  Google Scholar 

  10. Brandstrup B, Tonnesen H, Beier-Holgersen R, et al. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor blinded multicenter trial. Ann Surg. 2003;230:641–8.

    Article  Google Scholar 

  11. Cohn JN. Central venous pressure as a guide to volume expansion. Ann Int Med. 1967;66:1283–7.

    PubMed  CAS  Google Scholar 

  12. Baek S-M, Makabali GG, Bryan-Brown CW, et al. Plasma expansion in surgical patients with high central venous pressure (CVP): the relationship of blood volume to hematocrit, CVP, pulmonary wedge pressure, and cardiorespiratory changes. Surgery. 1975;78:304–15.

    PubMed  CAS  Google Scholar 

  13. Pinsky MR, Teboul JL. Assessment of indices of preload and volume responsiveness. Curr Opin Crit Care. 2005;11:235–9.

    Article  PubMed  Google Scholar 

  14. Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of Seven Mares. Chest. 2008;134:172–8.

    Article  PubMed  Google Scholar 

  15. Gelman S. Venous function and central venous pressure. Anesthesiology. 2008;108:735–48.

    Article  PubMed  Google Scholar 

  16. Bendjelid K, Romand JA. Fluid responsiveness in mechanically ventilated patients: a review of indices used in intensive care. Intensive Care Med. 2003;29:352–60.

    Article  PubMed  Google Scholar 

  17. Wagner JG, Leatherman JW. Right ventricular end-diastolic volume as a predictor of the hemodynamic response to a fluid challenge. Chest. 1998;113:1048–54.

    Article  PubMed  CAS  Google Scholar 

  18. Michard F, Boussat S, Chemla D, et al. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med. 2000;162:134–8.

    PubMed  CAS  Google Scholar 

  19. Kumar A, Anel R, Bunnell E, et al. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med. 2004;32:691–9.

    Article  PubMed  Google Scholar 

  20. Magder S, Scharf SM. In: Scharf SM, Pinsky MR, Magder S, editors. Venous return, respiratory–circulatory interactions in health and disease. New York: Marcel Dekker; 2001. p. 93–112.

    Google Scholar 

  21. Massumi RA, Mason DT, Vera Z, et al. Reversed pulsus paradoxus. N Engl J Med. 1973;289:1272–5.

    PubMed  CAS  Google Scholar 

  22. Perel A, Pizov R, Cotev S. Systolic blood pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage. Anesthesiology. 1987;67:498–502.

    Article  PubMed  CAS  Google Scholar 

  23. Michard F, Chemla D, Richard C, et al. Clinical use of respiratory changes in arterial pulse pressure to monitor the hemodynamic effects of PEEP. Am J Respir Crit Care Med. 1999;159:935–9.

    PubMed  CAS  Google Scholar 

  24. Rick JJ, Burke SS. Respiratory paradox. South Med J. 1978;71:1376–8.

    PubMed  CAS  Google Scholar 

  25. Pizov R, Ya’ari Y, Perel A. Systolic pressure variation is greater during hemorrhage than during sodium nitroprusside-induced hypotension in ventilated dogs. Anesth Analg. 1988;67:170–4.

    Article  PubMed  CAS  Google Scholar 

  26. Szold A, Pizov R, Segal E, et al. The effect of tidal volume and intravascular volume state on systolic pressure variation in ventilated dogs. Intensive Care Med. 1989;15:368–71.

    Article  PubMed  CAS  Google Scholar 

  27. Connors AF Jr, Speroff T, Dawson NV, et al. The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA. 1996;276:889–97.

    Article  PubMed  Google Scholar 

  28. Polanczyk CA, Rohde LE, Goldman L, et al. Right heart catheterization and cardiac complications in patient undergoing noncardiac surgery: an observational study. JAMA. 2001;286:309–14.

    Article  PubMed  CAS  Google Scholar 

  29. Sandham JD, Hull RD, Brant RF, et al. Canadian Critical Care Clinical Trials Group: a randomized, controlled trial of the use of pulmonary artery catheters in high-risk surgical patients. N Engl J Med. 2003;348:5–14.

    Article  PubMed  Google Scholar 

  30. Coriat P, Vrillon M, Perel A, et al. A comparison of systolic blood pressure variations and echocardiographic estimates of end-diastolic left ventricular size in patients after aortic surgery. Anesth Analg. 1994;78:46–53.

    Article  PubMed  CAS  Google Scholar 

  31. Tavernier B, Makhotine O, Lebuffe G, et al. Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology. 1998;89:1313–21.

    Article  PubMed  CAS  Google Scholar 

  32. Reuter DA, Kirchner A, Felbinger TW, et al. Optimising fluid therapy in mechanically ventilated patients after cardiac surgery by on-line monitoring of left ventricular stroke volume variations: a comparison to aortic systolic pressure variations. Br J Anesth. 2002;88:124–6.

    Article  CAS  Google Scholar 

  33. Reuter DA, Kirchner A, Felbinger TW, et al. Usefulness of left ventricular stroke volume variation to assess fluid responsiveness in patients with reduced cardiac function. Crit Care Med. 2003;31:1399–404.

    Article  PubMed  Google Scholar 

  34. Bendjelid K, Suter PM, Romand JA. The respiratory change in preejection period: a new method to predict fluid responsiveness. J Appl Physiol. 2004;96:337–42.

    Article  PubMed  Google Scholar 

  35. Vieillard-Baron A, Chergui K, Rabiller A, et al. Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med. 2004;30:1734–9.

    PubMed  Google Scholar 

  36. Godje O, Hoeke K, Lichtwarck-Aschoff M, et al. Continuous cardiac output by femoral arterial thermodilution calibrated pulse contour analysis: comparison with pulmonary arterial thermodilution. Crit Care Med. 1999;27:2407–12.

    Article  Google Scholar 

  37. Godje O, Hoeke K, Lamm P, et al. Continuous, less invasive, hemodynamic monitoring in intensive care after cardiac surgery. Thorac Cardiovasc Surg. 1998;46:242–9.

    Article  PubMed  CAS  Google Scholar 

  38. Beckett RC, Gray BA. Effect of atelectasis and embolization on extravascular thermal volume of the lung. J Appl Physiol. 1982;53:1614–9.

    PubMed  CAS  Google Scholar 

  39. Combes A, Berneau JB, Luyt CE, et al. Estimation of left ventricular systolic function by single transpulmonary thermodilution. Intensive Care Med. 2004;30:1377–83.

    PubMed  Google Scholar 

  40. Della Rocca G, Costa GM, Coccia C, et al. Preload index: pulmonary artery occlusion pressure versus intrathoracic blood volume monitoring during lung transplantation. Anesth Analg. 2002;95:835–43.

    Article  PubMed  Google Scholar 

  41. Della RG, Costa MG, Coccia C, et al. Preload and haemodynamic assessment during liver transplantation: a comparison between the pulmonary artery catheter and transpulmonary indicator dilution techniques. Eur J Anaesthesiol. 2002;19:868–75.

    Article  Google Scholar 

  42. Hofer CK, Ganter MT, Matter ES, et al. Volumetric assessment of left heart preload by thermodilution: comparing the PiCCO-VoLEF system with transoesophageal echocardiography. Anaesthesia. 2006;61:316–21.

    Article  PubMed  CAS  Google Scholar 

  43. Michard F, Alaya S, Zarka V, et al. Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock. Chest. 2003;124:1900–8.

    Article  PubMed  Google Scholar 

  44. Side C, Gosling R. Non-surgical assessment of cardiac function. Nature. 1971;232:335–6.

    Article  PubMed  CAS  Google Scholar 

  45. Singer M, Clarke J, Bennett ED. Continuous hemodynamic monitoring by esophageal Doppler. Crit Care Med. 1989;17:447–52.

    Article  PubMed  CAS  Google Scholar 

  46. Chinard FP, Enns T. Transcapillary pulmonary exchange of water in the dog. Am J Physiol. 1954;178:197–202.

    PubMed  CAS  Google Scholar 

  47. Conway D, Mayall R, Abdul-Latif M, et al. Randomized controlled trial investigating the influence of intravenous fluid titration using esophageal Doppler monitoring during bowel surgery. Anaesth Intensive Care. 2002;57:845–9.

    CAS  Google Scholar 

  48. Feldman LS, Anidjar M, Metrakos P, et al. Optimization of cardiac preload during laparoscopic donor nephrectomy: a preliminary study of central venous pressure versus esophageal Doppler monitoring. Surg Endosc. 2004;18:412–6.

    Article  PubMed  CAS  Google Scholar 

  49. Monnet X, Rienzo M, Osman D, et al. Esophageal Doppler monitoring predicts fluid responsiveness in critically ill ventilated patients. Intensive Care Med. 2005;31:1195–2001.

    Article  PubMed  Google Scholar 

  50. Mythen M, Webb A. Perioperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Arch Surg. 1995;130:423–9.

    PubMed  CAS  Google Scholar 

  51. Leykin Y, Pellis T, Mestro ED, et al. Anesthetic management of morbidly obese and super-morbidly obese patients undergoing bariatric operations: hospital course and outcomes. Obes Surg. 2006;16:1563–9.

    Article  PubMed  Google Scholar 

  52. Jones K. Bariatric surgery and the prevention of postoperative respiratory complication. Anesth Analg. 2004;98:1810–1.

    Google Scholar 

  53. Astiz ME. Pathophysiology and classification of shock state. In: Fink PM, Abraham E, Vincent JL, et al., editors. Text book of critical care. 5th ed. Philadelphia: Saunders; 2005. p. 901–2.

    Google Scholar 

Download references

Financial Disclosure

Purely institutional

Conflict of Interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar Jain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, A.K., Dutta, A. Stroke Volume Variation as a Guide to Fluid Administration in Morbidly Obese Patients Undergoing Laparoscopic Bariatric Surgery. OBES SURG 20, 709–715 (2010). https://doi.org/10.1007/s11695-009-0070-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-009-0070-x

Keywords

Navigation