Skip to main content

Advertisement

Log in

Dysexecutive and amnesic AD subtypes defined by single indicator and modern psychometric approaches: relationships with SNPs in ADNI

Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Previous investigators have suggested the existence of distinct cognitive phenotypes of Alzheimer’s disease (AD): a dysexecutive subgroup with executive functioning worse than memory and an amnesic subgroup with memory worse than executive functioning. We evaluated data from the AD Neuroimaging Initiative. We assigned people with AD to dysexecutive and amnesic subgroups using single indicators, and analogously using the ADNI-Mem and ADNI-EF composite scores developed using modern psychometric approaches. We evaluated associations between subgroup membership, APOE genotype, and single nucleotide polymorphisms (SNPs) are associated with AD, and brain vascular disease defined as white matter hyperintensities (WMH) and MRI-identified infarcts. We hypothesized that APOE ε4 and alleles associated with higher risk for AD would predict amnesic subgroup membership; alleles associated with higher WMH or infarct burden would predict dysexecutive subgroup membership. Classification agreement between the two approaches was only fair (kappa = 0.23). There was no relationship between APOE alleles and the dysexecutive or amnesic phenotypes defined by either categorization approach. There were 58 AD-related and 25 WMH- or infarct-related SNPs for which odds ratios were > 1.5 or < 0.67 for dysexecutive vs. amnesic subgroup defined by either categorization approach. Higher proportions of SNPs had odds ratios in the hypothesized direction for the subgroups defined by the modern psychometric approach for AD-related (58 % vs. 38 %, p-value < 0.001) and brain vascular disease-related SNPs (48 vs. 32 %, p-value = 0.01). Genetic variation may underlie differential performance in memory and executive functioning among people with AD. Modern psychometric composite scores produced group assignments with more SNP associations in the hypothesized direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • American Psychiatric Association. Task Force on DSM-IV. (1994). Diagnostic and statistical manual of mental disorders: DSM-IV (4th ed.). Washington, DC: American Psychiatric Association.

    Google Scholar 

  • Arbuthnott, K., & Frank, J. (2000). Trail making test, part B as a measure of executive control: validation using a set-switching paradigm. Journal of Clinical and Experimental Neuropsychology, 22(4), 518–528. doi:10.1076/1380-3395(200008)22:4;1-0;FT518.

    Article  PubMed  CAS  Google Scholar 

  • Benge, J. F., Balsis, S., Geraci, L., Massman, P. J., & Doody, R. S. (2009). How well do the ADAS-cog and its subscales measure cognitive dysfunction in Alzheimer’s disease? Dementia and Geriatric Cognitive Disorders, 28(1), 63–69. doi:10.1159/000230709.

    Article  PubMed  CAS  Google Scholar 

  • Binetti, G., Magni, E., Padovani, A., Cappa, S. F., Bianchetti, A., & Trabucchi, M. (1996). Executive dysfunction in early Alzheimer’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 60(1), 91–93.

    Article  PubMed  CAS  Google Scholar 

  • Cappa, A., Calcagni, M. L., Villa, G., Giordano, A., Marra, C., De Rossi, G., et al. (2001). Brain perfusion abnormalities in Alzheimer’s disease: comparison between patients with focal temporal lobe dysfunction and patients with diffuse cognitive impairment. [Comparative Study]. Journal of Neurology, Neurosurgery, and Psychiatry, 70(1), 22–27.

    Article  PubMed  CAS  Google Scholar 

  • Carmichael, O., Schwarz, C., Drucker, D., Fletcher, E., Harvey, D., Beckett, L., et al. (2010). Longitudinal changes in white matter disease and cognition in the first year of the Alzheimer disease neuroimaging initiative. Archives of Neurology, 67(11), 1370–1378. doi:10.1001/archneurol.2010.284.

    Article  PubMed  Google Scholar 

  • Crane, P. K., Carle, A., Gibbons, L. E., Insel, P., Mackin, R. S., Gross, A., et al. (2012). Development and assessment of a composite score for memory in the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Brain Imaging and Behavior. doi:10.1007/s11682-012-9186-z.

  • Crane, P. K., Narasimhalu, K., Gibbons, L. E., Pedraza, O., Mehta, K. M., Tang, Y., et al. (2008). Composite scores for executive function items: demographic heterogeneity and relationships with quantitative magnetic resonance imaging. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Journal of the International Neuropsychological Society: JINS, 14(5), 746–759. doi:10.1017/S1355617708081162.

    Article  PubMed  Google Scholar 

  • Debette, S., Bis, J. C., Fornage, M., Schmidt, H., Ikram, M. A., Sigurdsson, S., et al. (2010). Genome-wide association studies of MRI-defined brain infarcts: meta-analysis from the CHARGE Consortium. Stroke, 41(2), 210–217. doi:10.1161/STROKEAHA.109.569194.

    Article  PubMed  CAS  Google Scholar 

  • Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., et al. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. NeuroImage, 31(3), 968–980. doi:10.1016/j.neuroimage.2006.01.021.

    Article  PubMed  Google Scholar 

  • Dickerson, B. C., & Wolk, D. A. (2011). Dysexecutive versus amnesic phenotypes of very mild Alzheimer’s disease are associated with distinct clinical, genetic and cortical thinning characteristics. Journal of Neurology, Neurosurgery, and Psychiatry, 82(1), 45–51.

    Article  PubMed  Google Scholar 

  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.

    Article  PubMed  CAS  Google Scholar 

  • Fornage, M., Debette, S., Bis, J. C., Schmidt, H., Ikram, M. A., Dufouil, C., et al. (2011). Genome-wide association studies of cerebral white matter lesion burden: the CHARGE consortium. Annals of Neurology, 69(6), 928–939. doi:10.1002/ana.22403.

    Article  PubMed  CAS  Google Scholar 

  • Galton, C. J., Patterson, K., Xuereb, J. H., & Hodges, J. R. (2000). Atypical and typical presentations of Alzheimer’s disease: a clinical, neuropsychological, neuroimaging and pathological study of 13 cases. [Research Support, Non-U.S. Gov’t]. Brain: a Journal of Neurology, 123 Pt 3, 484–498.

    Article  CAS  Google Scholar 

  • Gibbons, L. E., Carle, A. C., Mackin, R. S., Harvey, D., Mukherjee, S., Insel, P., et al. (2012). A composite score for executive functioning, validated in Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants with baseline mild cognitive impairment. Brain Imaging and Behavior. doi:10.1007/s11682-012-9176-1.

  • Goodglass, H., & Kaplan, D. (1983). The assessment of aphasia and related disorders (2nd ed.). Philadelphia: Lea & Febiger.

    Google Scholar 

  • Haxby, J. V., Grady, C. L., Koss, E., Horwitz, B., Schapiro, M., Friedland, R. P., et al. (1988). Heterogeneous anterior-posterior metabolic patterns in dementia of the Alzheimer type. Neurology, 38(12), 1853–1863.

    Article  PubMed  CAS  Google Scholar 

  • Jack, C. R., Jr., Knopman, D. S., Jagust, W. J., Shaw L. M., Aisen P. S., Weiner M. W., et al. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurology, 9(1), 119–128.

    Google Scholar 

  • Johnson, J. K., Head, E., Kim, R., Starr, A., & Cotman, C. W. (1999). Clinical and pathological evidence for a frontal variant of Alzheimer disease. [Research Support, U.S. Gov’t, P.H.S.]. Archives of Neurology, 56(10), 1233–1239.

    Article  PubMed  CAS  Google Scholar 

  • Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174.

    Article  PubMed  CAS  Google Scholar 

  • McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology, 34(7), 939–944.

    Article  PubMed  CAS  Google Scholar 

  • Mohs, R. C., Knopman, D., Petersen, R. C., Ferris, S. H., Ernesto, C., Grundman, M., et al. (1997). Development of cognitive instruments for use in clinical trials of antidementia drugs: additions to the Alzheimer’s Disease Assessment Scale that broaden its scope. The Alzheimer’s Disease Cooperative Study. Alzheimer Disease and Associated Disorders, 11(Suppl 2), S13–S21.

    Article  PubMed  Google Scholar 

  • Morris, J. C., Heyman, A., Mohs, R. C., Hughes, J. P., van Belle, G., Fillenbaum, G., et al. (1989). The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology, 39(9), 1159–1165.

    Article  PubMed  CAS  Google Scholar 

  • Naj, A. C., Jun, G., Beecham, G. W., Wang, L. S., Vardarajan, B. N., Buros, J., et al. (2011). Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet.

  • Nelson, P. T., Alafuzoff, I., Bigio, E. H., Bouras, C., Braak, H., Cairns, N. J., et al. (2012). Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Journal of Neuropathology and Experimental Neurology, 71(5), 362–381. doi:10.1097/NEN.0b013e31825018f7.

    Article  PubMed  Google Scholar 

  • Nelson, P. T., Braak, H., & Markesbery, W. R. (2009). Neuropathology and cognitive impairment in Alzheimer disease: a complex but coherent relationship. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Journal of Neuropathology and Experimental Neurology, 68(1), 1–14. doi:10.1097/NEN.0b013e3181919a48.

    Article  PubMed  CAS  Google Scholar 

  • Potkin, S. G., Guffanti, G., Lakatos, A., Turner, J. A., Kruggel, F., Fallon, J. H., et al. (2009). Hippocampal atrophy as a quantitative trait in a genome-wide association study identifying novel susceptibility genes for Alzheimer’s disease. PloS One, 4(8), e6501. doi:10.1371/journal.pone.0006501.

    Article  PubMed  Google Scholar 

  • Reitan, R. M. (1958). Validity of the Trail Making Test as an indicator of organic brain damage. Perceptual and Motor Skills, 8, 271–276.

    Google Scholar 

  • Rey, A. (1964). L’examen clinique en psychologie. Paris: Presses Universitaires de France.

    Google Scholar 

  • Rosen, W. G., Terry, R. D., Fuld, P. A., Katzman, R., & Peck, A. (1980). Pathological verification of ischemic score in differentiation of dementias. [Research Support, U.S. Gov’t, P.H.S.]. Annals of Neurology, 7(5), 486–488. doi:10.1002/ana.410070516.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Cubillo, I., Perianez, J. A., Adrover-Roig, D., Rodriguez-Sanchez, J. M., Rios-Lago, M., Tirapu, J., et al. (2009). Construct validity of the Trail Making Test: role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. Journal of the International Neuropsychological Society: JINS, 15(3), 438–450. doi:10.1017/S1355617709090626.

    Article  PubMed  CAS  Google Scholar 

  • Saykin, A. J., Shen, L., Foroud, T. M., Potkin, S. G., Swaminathan, S., Kim, S., et al. (2010). Alzheimer’s Disease Neuroimaging Initiative biomarkers as quantitative phenotypes: Genetics core aims, progress, and plans. Alzheimer’s & Dementia, 6(3), 265–273. doi:10.1016/j.jalz.2010.03.013.

    Article  CAS  Google Scholar 

  • Schwarz, C., Fletcher, E., DeCarli, C., & Carmichael, O. (2009). Fully-automated white matter hyperintensity detection with anatomical prior knowledge and without FLAIR. Information Processing in Medical Imaging, 21, 239–251.

    Article  PubMed  Google Scholar 

  • Storey, E., Slavin, M. J., & Kinsella, G. J. (2002). Patterns of cognitive impairment in Alzheimer’s disease: assessment and differential diagnosis. [Review]. Frontiers in Bioscience: a Journal and Virtual Library, 7, e155–e184.

    Article  Google Scholar 

  • Weiner, M. W., Aisen, P. S., Jack, C. R., Jr., Jagust, W. J., Trojanowski, J. Q., Shaw, L., et al. (2010). The Alzheimer’s disease neuroimaging initiative: progress report and future plans. [Historical Article Research Support, Non-U.S. Gov’t Review]. Alzheimer’s & Dementia: the Journal of the Alzheimer’s Association, 6(3), 202–211. doi:10.1016/j.jalz.2010.03.007. e207.

    Article  Google Scholar 

  • Wechsler, D. (1981). Wechsler adult intelligence scale-revised. NY: Psychological Corporation.

    Google Scholar 

  • Wechsler, D. (1987). WMS-R: Wechsler memory scale—revised manual. NY: Psychological Corporation / HBJ.

    Google Scholar 

Download references

Acknowledgment

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Abbott; Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Amorfix Life Sciences Ltd.; AstraZeneca; Bayer HealthCare; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles. This research was also supported by NIH grants P30 AG010129 and K01 AG030514. Data management and the specific analyses reported here were supported by NIH grant R01 AG029672 (Paul Crane, PI), R13 AG030995 (Mungas), and P50 AG05136 (Raskind), from the NIA.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Shubhabrata Mukherjee.

Additional information

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 32 kb)

Appendix

Appendix

Table 3 Genetic association results adjusting for WMH and infarcts

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukherjee, S., Trittschuh, E., Gibbons, L.E. et al. Dysexecutive and amnesic AD subtypes defined by single indicator and modern psychometric approaches: relationships with SNPs in ADNI. Brain Imaging and Behavior 6, 649–660 (2012). https://doi.org/10.1007/s11682-012-9207-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-012-9207-y

Keywords

Navigation