Skip to main content

Advertisement

Log in

Confirmatory factor analysis of the ADNI neuropsychological battery

Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a large multi-center study designed to develop optimized methods for acquiring longitudinal neuroimaging, cognitive, and biomarker measures of AD progression in a large cohort of patients with Alzheimer’s disease (AD), patients with Mild Cognitive Impairment, and healthy controls. Detailed neuropsychological testing was conducted on all participants. We examined the factor structure of the ADNI Neuropsychological Battery across older adults with differing levels of clinical AD severity based on the Clinical Dementia Rating Scale (CDR). Confirmatory factor analysis (CFA) of 23 variables from 10 neuropsychological tests resulted in five factors (memory, language, visuospatial functioning, attention, and executive function/processing speed) that were invariant across levels of cognitive impairment. Thus, these five factors can be used as indicators of cognitive function in older adults who are participants in ADNI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Albert, M. (2008). The neuropsychology of the development of Alzheimer’s disease. In F. I. M. Craik & T. A. Salthouse (Eds.), The handbook of aging and cognition (4th ed., pp. 97–132). London: Academic.

    Google Scholar 

  • Alvarez, J. A., & Emory, E. (2006). Executive function and the frontal lobes: a meta-analytic review. Neuropsychology Review, 16(1), 17–42.

    Article  PubMed  Google Scholar 

  • Austin, P. C. (2003). Type I error inflation in the presence of a ceiling effect. The American Statistician, 57, 97–104.

    Article  Google Scholar 

  • Barnett, V., & Lewis, T. (1994). Outliers in statistical data (3rd ed.). Chichester: Wiley.

    Google Scholar 

  • Binet, A. (1905). L’Année Psychologique, 12, 191–244.

    Google Scholar 

  • Bontempo, D. E., & Hofer, S. M. (2007). Assessing factorial invariance in cross-sectional and longitudinal studies. In A. D. Ong & M. van Dulmen (Eds.), Handbook of methods in positive psychology (pp. 153–175). New York: Oxford University Press.

    Google Scholar 

  • Borsboom, D., Romeijn, J. W., & Wicherts, J. M. (2008). Measurement invariance versus selection invariance: Is fair selection possible? Psychological Methods, 13, 75–98.

    Article  PubMed  Google Scholar 

  • Brookmeyer, R., Evans, D. A., Hebert, L., Langa, K. M., Heeringa, S. G., Plassman, B. L., et al. (2011). National estimates of the prevalence of Alzheimer’s disease in the United States. Alzheimer’s & Dementia, 7(1), 61–73.

    Article  Google Scholar 

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale: Erlbaum.

    Google Scholar 

  • Crane, P. K., Narasimhalu, K., Gibbons, L. E., Mungas, D. M., Haneuse, S., & van Belle, G. (2008). Item response theory facilitated cocalibrating cognitive tests and reduced bias in estimated rates of decline. Journal of Clinical Epidemiology, 61, 1018–1027.e9.

    Article  PubMed  Google Scholar 

  • DeCarli, C., Mungas, D., Harvey, D., Reed, B., Weiner, M., Chui, H., et al. (2004). Memory impairment, but not cerebrovascular disease, predicts progression of MCI to dementia. Neurology, 63(2), 220–227.

    Article  PubMed  CAS  Google Scholar 

  • Desgranges, B., Eustache, F., Rioux, P., de La Sayette, V., & Lechevalier, B. (1996). Memory disorders in Alzheimer’s disease and the organization of human memory. Cortex, 32(3), 387–412.

    PubMed  CAS  Google Scholar 

  • Dowling, N. M., Hermann, B., La Rue, A., & Sager, M. A. (2010). Latent structure and factorial invariance of a neuropsychological test battery for the study of preclinical Alzheimer’s disease. Neuropsychology, 24(6), 742–756.

    Article  PubMed  Google Scholar 

  • Drijgers, R. L., Verhey, F. R., Leentjens, A. F., Kohler, S., & Aalten, P. (2011). Neuropsychological correlates of apathy in mild cognitive impairment and Alzheimer’s disease: the role of executive functioning. International Psychogeriatrics, 23(8), 1327–1333.

    Article  PubMed  Google Scholar 

  • Evans, M. C., Barnes, J., Nielsen, C., Kim, L. G., Clegg, S. L., Blair, M., et al. (2010). Volume changes in Alzheimer’s disease and mild cognitive impairment: cognitive associations. European Radiology, 20(3), 674–82.

    Article  PubMed  Google Scholar 

  • Fillenbaum, G. G., Peterson, B., & Morris, J. C. (1996). Estimating the validity of the clinical Dementia Rating Scale: the CERAD experience. Consortium to Establish a Registry for Alzheimer’s Disease. Aging (Milano), 8(6), 379–385.

    CAS  Google Scholar 

  • Gallagher, M., & Koh, M. T. (2011). Episodic memory on the path to Alzheimer’s disease. Current Opinion in Neurobiology, 21(6), 929–3.

    Article  PubMed  CAS  Google Scholar 

  • Garner, W. R., Hake, H. W., & Eriksen, C. W. (1956). Operationism and the concept of perception. Psychological Review, 63(3), 149–159.

    Article  PubMed  CAS  Google Scholar 

  • Grossman, M., Koenig, P., Glosser, G., DeVita, C., Moore, P., Rhee, J., et al. (2003). Neural basis for semantic memory difficulty in Alzheimer’s disease: an fMRI study. Brain, 126(Pt 2), 292–311.

    Article  PubMed  Google Scholar 

  • Harrison, J. E., Buxton, P., Husain, M., & Wise, R. (2000). Short test of semantic and phonological fluency: normal performance, validity and test-retest reliability. British Journal of Clinical Psychology, 39(Pt 2), 181–191.

    Article  PubMed  Google Scholar 

  • Hayden, K. M., Jones, R. N., Zimmer, C., Plassman, B. L., Browndyke, J. N., Pieper, C., et al. (2011). Factor structure of the National Alzheimer’s Coordinating Centers uniform dataset neuropsychological battery: an evaluation of invariance between and within groups over time. Alzheimer Disease and Associated Disorders, 25(2), 128–137.

    Article  PubMed  Google Scholar 

  • Heywood, H. B. (1931). On finite sequences of real numbers. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character, 134(824), 486–501.

    Google Scholar 

  • Hu, L., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: sensitivity to under parameterized model misspecification. Psychological Methods, 3, 424–453.

    Article  Google Scholar 

  • Jack, C. R. Jr., Knopman, D. S., Jagust, W. J., Shaw, L. M., Aisen, P. S., Weiner, M. W., et al. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol, 9(1),119–28.

    Google Scholar 

  • Jones, S. N., & Ayers, C. R. (2006). Psychometric properties and factor structure of an expanded CERAD neuropsychological battery in an elderly VA sample. Archives of Clinical Neuropsychology, 21(4), 359–365.

    Article  PubMed  Google Scholar 

  • Kaplan, E., Goodglass, H., & Weintraub, S. (1983). The Boston naming test. Philidelphia: Lea and Febiger.

    Google Scholar 

  • Landau, S. M., Harvey, D., Madison, C. M., Koeppe, R. A., Reiman, E. M., Foster, N. L., et al. (2011). Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiology of Aging, 32(7), 1207–1218.

    Article  PubMed  Google Scholar 

  • Leow, A. D., Yanovsky, I., Parikshak, N., Hua, X., Lee, S., Toga, A. W., et al. (2009). Alzheimer’s disease neuroimaging initiative: a one-year follow up study using tensor-based morphometry correlating degenerative rates, biomarkers and cognition. NeuroImage, 45(3), 645–655.

    Article  PubMed  Google Scholar 

  • MacDonald, M. C., Almor, A., Henderson, V. W., Kempler, D., & Andersen, E. S. (2001). Assessing working memory and language comprehension in Alzheimer’s disease. Brain and Language, 78(1), 17–42.

    Article  PubMed  CAS  Google Scholar 

  • McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. [GuidelinePractice Guideline]. Neurology, 34(7), 939–944.

    Article  PubMed  CAS  Google Scholar 

  • Morris, J. C. (1997). Clinical dementia rating: a reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. International Psychogeriatrics, 9(Suppl 1), 173–176. discussion 177–178.

    Article  PubMed  Google Scholar 

  • Morris, J. C., Ernesto, C., Schafer, K., Coats, M., Leon, S., Sano, M., et al. (1997). Clinical dementia rating training and reliability in multicenter studies: the Alzheimer’s Disease Cooperative Study experience. Neurology, 48(6), 1508–1510.

    Article  PubMed  CAS  Google Scholar 

  • Mueller, S. G., Weiner, M. W., Thal, L. J., Petersen, R. C., Jack, C. R., Jagust, W., et al. (2005). Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimer’s & Dementia, 1(1), 55–66.

    Article  Google Scholar 

  • Mungas, D., Widaman, K. F., Reed, B. R., & Tomaszewski Farias, S. (2011). Measurement invariance of neuropsychological tests in diverse older persons. Neuropsychology, 25(2), 260–269.

    Article  PubMed  Google Scholar 

  • Muthen, L. K., & Muthen, B. O. (2010). MPlus: User’s guide (6th ed.). Los Angeles: Muthen & Muthen.

    Google Scholar 

  • Nestor, P. J., Fryer, T. D., & Hodges, J. R. (2006). Declarative memory impairments in Alzheimer’s disease and semantic dementia. NeuroImage, 30(3), 1010–1020.

    Article  PubMed  Google Scholar 

  • Pedraza, O., Lucas, J. A., Smith, G. E., Willis, F. B., Graff-Radford, N. R., Ferman, T. J., et al. (2005). Mayo’s older African American normative studies: confirmatory factor analysis of a core battery. Journal of International Neuropsychological Society, 11(2), 184–191.

    Article  Google Scholar 

  • Pereira, F. S., Yassuda, M. S., Oliveira, A. M., & Forlenza, O. V. (2008). Executive dysfunction correlates with impaired functional status in older adults with varying degrees of cognitive impairment. International Psychogeriatrics, 20(6), 1104–1115.

    Article  PubMed  CAS  Google Scholar 

  • Petersen, R. C., Jack, C. R., Jr., Xu, Y. C., Waring, S. C., O’Brien, P. C., Smith, G. E., et al. (2000). Memory and MRI-based hippocampal volumes in aging and AD. Neurology, 54(3), 581–587.

    Article  PubMed  CAS  Google Scholar 

  • Petersen, R. C., Aisen, P. S., Beckett, L. A., Donohue, M. C., Gamst, A. C, Harvey, D J., et al. (2010). Alzheimer's disease neuroimaging initiative (ADNI): clinical characterization. Neurology, 74(3), 201–209.

    Google Scholar 

  • Pike, K. E., & Savage, G. (2008). Memory profiling in mild cognitive impairment: can we determine risk for Alzheimer’s disease? Journal of Neuropsychology, 2(Pt 2), 361–372.

    Article  PubMed  Google Scholar 

  • Ready, R. E., Ott, B. R., & Grace, J. (2004). Validity of informant reports about AD and MCI patients’ memory. Alzheimer Disease and Associated Disorders, 18(1), 11–16.

    Article  PubMed  Google Scholar 

  • Reise, S. P., Widaman, K. F., & Pugh, R. H. (1993). Confirmatory factor analysis and item response theory: two approaches for exploring measurement invariance. Psychological Bulletin, 114(3), 552–566.

    Article  PubMed  CAS  Google Scholar 

  • Reitan, R. M., & Wolfson, D. (1985). The Halstead-Reitan neuropsychological test battery (2nd ed.). Tucson: Neuropsychology Press.

    Google Scholar 

  • Rey, A. (1964). L’examen clinique en psychologie [clinical examination in psychology]. Paris: Presses Univeritaires de France.

    Google Scholar 

  • Rozzini, L., Chilovi, B. V., Conti, M., Bertoletti, E., Delrio, I., Trabucchi, M., et al. (2007). Conversion of amnestic Mild Cognitive Impairment to dementia of Alzheimer type is independent to memory deterioration. International Journal of Geriatric Psychiatry, 22(12), 1217–1222.

    Article  PubMed  Google Scholar 

  • Siedlecki, K. L., Honig, L. S., & Stern, Y. (2008). Exploring the structure of a neuropsychological battery across healthy elders and those with questionable dementia and Alzheimer’s disease. Neuropsychology, 22(3), 400–411.

    Article  PubMed  Google Scholar 

  • Spaan, P. E., Raaijmakers, J. G., & Jonker, C. (2003). Alzheimer’s disease versus normal ageing: a review of the efficiency of clinical and experimental memory measures. Journal of Clinical and Experimental Neuropsychology, 25(2), 216–233.

    Article  PubMed  Google Scholar 

  • Steiger, J. H. (1989). EzPath: A supplementary module for SYSTAT and SYGRAPH. Evanston: SYSTAT.

    Google Scholar 

  • Stern, Y., Albert, S., Tang, M. X., & Tsai, W. Y. (1999). Rate of memory decline in AD is related to education and occupation: cognitive reserve? Neurology, 53(9), 1942–1947.

    Article  PubMed  CAS  Google Scholar 

  • Strauss, M. E., Thompson, P., Adams, N. L., Redline, S., & Burant, C. (2000). Evaluation of a model of attention with confirmatory factor analysis. Neuropsychology, 14(2), 201–208.

    Article  PubMed  CAS  Google Scholar 

  • Tuokko, H. A., Chou, P. H., Bowden, S. C., Simard, M., Ska, B., & Crossley, M. (2009). Partial measurement equivalence of French and English versions of the Canadian Study of Health and Aging neuropsychological battery. Journal of the International Neuropsychological Society, 15(3), 416–425.

    Article  PubMed  Google Scholar 

  • Wechsler, D. (1981). Manual for the Wechsler adult intelligence scale-revised. New York: The Psychological Corporation.

    Google Scholar 

  • Weiner, M. W., Aisen, P. S., Jack, C. R. Jr., Jagust, W. J., Trojanowski, J.Q., Shaw, L., et al. (2010). Alzheimer's disease neuroimaging initiative. The Alzheimer's disease neuroimaging initiative: progress report and future plans. Alzheimers Dement, 6(3):202–11.e7.

    Google Scholar 

  • Welsh, K., Butters, N., Hughes, J., Mohs, R., & Heyman, A. (1991). Detection of abnormal memory decline in mild cases of Alzheimer’s disease using CERAD neuropsychological measures. Archives of Neurology, 48(3), 278–281.

    Article  PubMed  CAS  Google Scholar 

  • Widaman, K. F., Ferrer, E., & Conger, R. D. (2010). Factorial invariance within longitudinal structural equation models: measuring the same construct across time. Child Dev Perspect, 4(1), 10–18.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge a conference grant from the National Institute on Aging (R13AG030995, PI: Dan Mungas) that facilitated data analysis for this project.

Dr. Park was supported by a grant from the National Institute of Aging (R01 AG031252 PI: Sarah Farias). Dr. Gross was supported by a National Institutes of Health Translational Research in Aging fellowship (T32 AG023480, PI: Lewis Lipsitz) and a grant from the National Institute on Aging (P01 AG031720 PI: Sharon Inouye). Dr. McLaren was supported by National Institute on Aging grants AG036694 (PI: Reisa Sperling) and AG027171 (PI: Alireza Atri). Dr. Pa was supported by the National Institute on Aging (K01 AG034175, PI: Dr. Pa). Dr. Johnson was supported by a grant from the National Institute of Aging grant AG022538 (PI: Johnson). Dr. Manly was supported by National Institute on Aging grants AG028786 (PI: Manly) and AG037212 (PI: Mayeux).

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Abbott; Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Amorfix Life Sciences Ltd.; AstraZeneca; Bayer HealthCare; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles. This research was also supported by NIH grants P30 AG010129, K01 AG030514, and the Dana Foundation.

The contents do not represent the views of the Dept. of Veterans Affairs, the United States Government, or any other funding entities.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Lovingly Quitania Park.

Additional information

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). As such, the investigators with the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in the analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.ucla.edu/wpcontent/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table S1

Correlation Matrix for Neuropsychological Tests by Group (n=819) (DOCX 90 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, L.Q., Gross, A.L., McLaren, D.G. et al. Confirmatory factor analysis of the ADNI neuropsychological battery. Brain Imaging and Behavior 6, 528–539 (2012). https://doi.org/10.1007/s11682-012-9190-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-012-9190-3

Keywords

Navigation