Skip to main content
Log in

A Review of Challenges in the Use of fMRI for Disease Classification / Characterization and A Projection Pursuit Application from A Multi-site fMRI Schizophrenia Study

  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Functional magnetic resonance imaging (fMRI) is a fairly new technique that has the potential to characterize and classify brain disorders such as schizophrenia. It has the possibility of playing a crucial role in designing objective prognostic/diagnostic tools, but also presents numerous challenges to analysis and interpretation. Classification provides results for individual subjects, rather than results related to group differences. This is a more complicated endeavor that must be approached more carefully and efficient methods should be developed to draw generalized and valid conclusions out of high dimensional data with a limited number of subjects, especially for heterogeneous disorders whose pathophysiology is unknown. Numerous research efforts have been reported in the field using fMRI activation of schizophrenia patients and healthy controls. However, the results are usually not generalizable to larger data sets and require careful definition of the techniques used both in designing algorithms and reporting prediction accuracies. In this review paper, we survey a number of previous reports and also identify possible biases (cross-validation, class size, e.g.) in class comparison/prediction problems. Some suggestions to improve the effectiveness of the presentation of the prediction accuracy results are provided. We also present our own results using a projection pursuit algorithm followed by an application of independent component analysis proposed in an earlier study. We classify schizophrenia versus healthy controls using fMRI data of 155 subjects from two sites obtained during three different tasks. The results are compared in order to investigate the effectiveness of each task and differences between patients with schizophrenia and healthy controls are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baddeley, A. (1992). Working memory. Science, 255(5044), 556–559.

    Article  PubMed  CAS  Google Scholar 

  • Bellman, R. (1961). Adaptive control processes - A guided tour (pp. 255). Princeton: Princeton University Press.

    Google Scholar 

  • Braff, D. L. (1993). Information processing and attention dysfunctions in schizophrenia. Schizophrenia Bulletin, 19, 233–259.

    PubMed  CAS  Google Scholar 

  • Calhoun, V. D., Adali, T., Pearlson, G. D., & Pekar, J. (2001a). Group ica of functional MRI data: Separability, stationarity, and inference. In ICA2001. San Diego, CA.

  • Calhoun, V. D., Adali, T., Pearlson, G. D., & Pekar, J. J. (2001b). A method for making group inferences from functional mri data using independent component analysis. Human Brain Mapping, 14, 140–151.

    Article  PubMed  CAS  Google Scholar 

  • Calhoun, V. D., Adali, T., Pearlson, G. D., & Pekar, J. J. (2001c). Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms. Human Brain Mapping, 13, 43–53.

    Article  PubMed  CAS  Google Scholar 

  • Calhoun, V. D., Kiehl, K. A., Liddle, P. F., & Pearlson, G. D. (2004). Aberrant localization of synchronous hemodynamic activity in auditory cortex reliably characterizes schizophrenia. Biological Psychiatry, 55, 842–849.

    Article  PubMed  Google Scholar 

  • Calhoun, V. D., Maciejewski, P. K., Pearlson, G. D., Pearlson, G. D., & Kiehl, K. A. (2008). Temporal lobe and default hemodynamic brain modes discriminate between schizophrenia and bipolar disorder. Human Brain Mapping (in press).

  • Casey, B., Cohen, J., & O’Craven, K. (1998). Reproducability of fMRI results across four institutions using a spatial working memory task. NeuroImage, 8(3), 249–261.

    Article  PubMed  CAS  Google Scholar 

  • Demirci, O., & Calhoun, V. D. (2007). Detection of schizophrenia using fMRI data via projection pursuit. In IEEE international workshop on machine learning for signal processing. Thessaloniki, Greece.

  • Demirci, O., Clark, V., & Calhoun, V. D. (2008). A projection pursuit algorithm to classify individuals using fMRI data: Application to schizophrenia. NeuroImage, 39, 1774–1782.

    Article  PubMed  Google Scholar 

  • Demirci, O., Tyo, J. S., & Ritchie, E. A. (2007). Spatial and spatiotemporal projection pursuit techniques to predict the extratropical transition of tropical cyclones. IEEE Transactions on Geoscience and Remote Sensing, 45, 418–425.

    Article  Google Scholar 

  • Fan, Y., Rao, H., Hurt, H., Gianetta, J., Korczykowski, M., Shera, D., et al. (2007). Multivariate examination of brain abnormality using both structural and functional MRI. NeuroImage, 36, 1189–1199.

    Article  PubMed  Google Scholar 

  • First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (1995). Structured clinical interview for Dsm-Iv axis I disorders—patient edition (Scid-I/P, Version 2.0). New York: Biometrics Research Department, New York State Psychiatric Institute.

    Google Scholar 

  • Ford, J., Farid, H., Makedon, F., Flashman, L., McAllister, T., Megalooikonomou, V., et al. (2003). Patient classification of fMRI activation maps. In Proc. of the 6th annual international conference on medical image computing and computer assisted intervention (MICCAI’03).

  • Ford, J., Shen, L., Makedon, F., Flashman, L. A., & Saykin, A. J. (2002). A combined structural-functional classification of schizophrenia using hippocampal volume plus fMRI activation. In Second joint EMBS/BMES conference. Houston, TX.

  • Freire, L., Roche, A., & Mangin, J. F. (2002). What is the best similarity measure for motion correction in fMRI time series? IEEE Transactions on Medical Imaging, 21, 470–484.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, L., Glover, G. H., & FBIRN (2006). Reducing interscanner variability of activation in a multicenter fMRI study: Controlling for signal-to-fluctuation-noise-ratio (sfnr) differences. NeuroImage, 33, 471–481.

    Article  PubMed  Google Scholar 

  • Friston, K., Ashburner, J., Frith, C. D., Poline, J. P., Heather, J. D., & Frackowiak, R. S. (1995). Spatial registration and normalization of images. Human Brain Mapping, 2, 165–189.

    Article  Google Scholar 

  • Garrity, A. G., Pearlson, G. D., McKiernan, K., Lloyd, D., Kiehl, K. A., & Calhoun, V. D. (2007). Aberrant “default mode” functional connectivity in schizophrenia. American Journal of Psychiatry, 164(3), 450–457.

    Article  PubMed  Google Scholar 

  • Georgopoulos, A. P., Karageorgiou, E., Leuthold, A., Lewis, S. M., Lynch, J., Alonso, A. A., et al. (2007). Synchronous neural interactions assessed by magnetoencephalography: A functional biomarker for brain disorders. Journal of Neural Engineering, 4, 349–355.

    Article  PubMed  Google Scholar 

  • Gerig, G., Styner, M., Shenton, M. E., & Lieberman, J. A. (2001). Shape versus size: Improved understanding of the morphology of brain structures. In Proc. MICCAI 2001. Lecture Notes in Computer Science 2208 (pp. 24–32).

  • GIFT (2008). Group ICA of fMRI Toolbox (GIFT). http://icatb.sourceforge.net/.

  • Golland, P., Grimson, W. E. L., Shenton, M. E., & Kikinis, R. (2000). Small sample size learning for shape analysis of anatomical structures. In Proceedings of MICCAI. Third international conference on medical robotics, imaging and computer assisted intervention, LNCS (Vol. 1935, pp. 72–82).

  • Hyvarinen, A., Karhunen, Y., & Oja, E. (2001). Independent component analysis. New York: Wiley-Interscience (May 18)

    Google Scholar 

  • Jimenez, L. O., & Landgrebe, D. A. (1998). Supervised classification in high-dimensional space: Geometrical, statistical, and asymptotical properties of multivariate data. IEEE Transactions on Systems, Man, and Cybernetics-Part C, 28, 39–54.

    Article  Google Scholar 

  • Jimenez, L. O., & Landgrebe, D. A. (1999). Hyperspectral data analysis and supervised feature reduction via projection pursuit. IEEE Transactions on Geoscience and Remote Sensing, 37, 2653–2667.

    Article  Google Scholar 

  • Job, D. E., Whalley, H. C., McIntosh, A. M., Owens, D. G., Johnstone, E. C., & Lawrie, S. M. (2006). Grey matter changes can improve the prediction of schizophrenia in subjects at high risk. BioMed Central, 4, 29.

    Google Scholar 

  • Kiehl, K. A., Liddle, P. F. (2001). An event-related functional magnetic resonance imaging study of an auditory oddball task in schizophrenia. Schizophrenia Research, 48, 159–171.

    Article  PubMed  CAS  Google Scholar 

  • Kiehl, K. A., Stevens, M. C., Celone, K., Kurtz, M., & Krystal, J. H. (2005). Abnormal hemodynamics in schizophrenia during an auditory oddball task. Biological Psychiatry, 57, 1029–1040.

    Article  PubMed  Google Scholar 

  • Kontos, D., Megalooikonomou, V., Ghubade, N., & Faloutsos, C. (2004). Detecting discriminative functional MRI activation patterns using space filling curves. In Proc. of the 25th annual international conference of the IEEE engineering in medicine and bilogy society (EMBC). Cancun, Mexico.

  • Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., et al. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences, 89, 5675–5679.

    Article  CAS  Google Scholar 

  • McCarley, R. W., Shenton, M. E., O’Donnell, B. F., Faux, S. F., Kikinis, R., Nestor, P. G., et al. (1993). Auditory p300 abnormalities and left posterior superior temporal gyrus volume reduction in schizophrenia. Archives of General Psychiatry, 50, 190–197.

    PubMed  CAS  Google Scholar 

  • McGhie, A., & Chapman, J. (1961). Disorders of attention and perception in early schizophrenia. British Journal of Medical Psychology, 34, 103–116.

    PubMed  CAS  Google Scholar 

  • McKeown, M. J., Makeig, S., Brown, G. G., Jung, T. P., Kindermann, S. S., Bell, A. J., et al. (1998). Analysis of fmri data by blind separation into independent spatial components. Human Brain Mapping, 6, 160–188.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, K., Kawasaki, Y., Suzuki, M., Hagino, H., Kurokawa, K., Takahashi, T., et al. (2004). Multiple structural brain measures obtained by three-dimensional magnetic resonance imaging to distinguish between schizophrenia patients and normal subjects. American Journal of Psychiatry, 158, 1809–1817.

    Google Scholar 

  • Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences, 87, 9868–9872.

    Article  CAS  Google Scholar 

  • Pardo, P. J., Georgopoulos, A. P., Kenny, J. T., Stuve, T. A., Findling, R. L., & Schulz, S. C. (2006). Classification of adolescent psychotic disorders using linear discriminant analysis. Schizophrenia Research, 87, 297–306.

    Article  PubMed  Google Scholar 

  • Pokrajac, D., Megalooikonomou, V., Lazarevic, A., Kontos, D., & Obradovic, Z. (2005). Applying spatial distribution analysis techniques to classification of 3D medical images. Artificial Intelligence in Medicine, 33, 261–280.

    Article  PubMed  Google Scholar 

  • Robert, P., & Escoufier, Y. (1976). A unifying tool for linear multivariate statistical methods: The RV-coefficient. Applied Statistics, 25, 257–265.

    Article  Google Scholar 

  • Shankardass, A., Nicolson, R., & Fawcett, A. (2001). A combined structural–functional classification of schizophrenia using hippocampal volume plus fMRI activation. In 5th BDA international conference. University of York, UK.

    Google Scholar 

  • Shen, L., Ford, J., Makedon, F., & Saykin, A. (2004). A surface-based approach for classification of 3d neuroanatomic structures. Intelligent Data Analysis, An International Journal, 8(6), 519–542.

    Google Scholar 

  • Shinkareva, S. V., Ombao, H. C., Sutton, B. P., Mohanty, A., & Miller, G. A. (2006). Classification of functional brain images with a spatio-temporal dissimilarity map. NeuroImage, 33, 63–71.

    Article  PubMed  Google Scholar 

  • Simon, R. (2004). When is a genomic classifier ready for prime time? Nature Clinical Practice, 1, 4–5.

    Article  PubMed  Google Scholar 

  • Simon, R., Radmacher, M. D., Dobbin, K., & McShane, L. M. (2003). Pitfalls in the use of DNA Microarray Data for Diagnostic and Prognostic Classification. Journal of the National Cancer Institute, 95(1), 14–18.

    Article  PubMed  CAS  Google Scholar 

  • SPM5 (2008). Statistical parametric mapping (SPM). http://www.fil.ion.ucl.ac.uk/spm/.

  • Symond, M. B., Harris, A. W. F., Gordon, E., & Williams, L. M. (2005). Gamma synchrony in first-episode schizophrenia: A disorder of temporal connectivity? American Journal of Psychiatry, 162, 459–465.

    Article  PubMed  Google Scholar 

  • Tecchio, F., Benassic, F., Zappasodia, F., Gialloretid, L. E., Palermoe, M., Serif, S., et al. (2003). Auditory sensory processing in autism: A magnetoencephalographic study. Biological Psychiatry, 54, 647–654.

    Article  PubMed  Google Scholar 

  • Tegeler, C., Strother, S., Anderson, J., & Kim, S. (1999). Reproducability of BOLD-based functional MRI obtained at 4T. Human Brain Mapping, 7(4), 267–283.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Q., Kontos, D., Li, G., & Megalooikonomou, V. (2004). Application of time series techniques to data mining and analysis of spatial patterns in 3D images. In Proc. of the 2004 IEEE international conference on acoustics, speech, and signal processing (ICASSP 2004).

  • Watersa, F. A. V., Badcockb, J. C., Mayberya, M. T., & Michiea, P. T. (2003). Inhibition in schizophrenia: Association with auditory hallucinations. Schizophrenia Research, 62, 275–280.

    Article  Google Scholar 

  • Wood, I., Visscher, P., & Mengersen, K. (2007). Classification based upon gene expression data: Bias and precision of error rates. Bioinformatics, 23, 1363–1370.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The data collection was funded by the Department of Energy, grant DE-FG02-99ER62764. The authors would like to thank the MIND Research Network staff for their efforts during the data collection processes. This work was funded by the National Institutes of Health, under grants 1 R01 EB 000840 and 1 R01 EB 005846.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oguz Demirci.

Appendix A

Appendix A

An observation matrix, X, including n subjects each represented with m voxels,

$$ X_{m \times n} = \begin{bmatrix} \vdots & \vdots & \; & \vdots \\ s_{1} & s_{2} & \cdots & s_{n} \\ \vdots & \vdots & \; & \vdots \end{bmatrix}, m \gg n \; . \; $$
(2)

Two different covariance matrices can be defined, and two different eigendecompositions are possible,

$$ C_{1} = X \; X^{T} = Q_{m \times n} \; \Lambda_{1_{n \times n}} \; Q^{T}_{n \times m} $$
(3)
$$ C_{2} = X^{T} \; X = P_{n \times n} \; \Lambda_{2_{n \times n}} \; P^{T}_{n \times n} $$
(4)

where

$$ Q_{m \times m} = \begin{bmatrix} \vdots & \vdots & \; & \vdots \\ q_{1} & q_{2} & \cdots & q_{m} \\ \vdots & \vdots & \; & \vdots \\ \end{bmatrix} \Rightarrow Q_{m \times n}, P_{n \times n} = \begin{bmatrix} \vdots & \vdots & \; & \vdots \\ p_{1} & p_{2} & \cdots & p_{n} \\ \vdots & \vdots & \; & \vdots \\ \end{bmatrix}, $$
(5)

and

$$ \Lambda_{1_{m \times m}} = \begin{bmatrix} \lambda_{1} & \; & \; & \; \\ \; & \ddots & \; & \; \\ \; & \; & \lambda_{n} & \; \\ \; & \; & \; & 0 \\\end{bmatrix} \Rightarrow \Lambda_{1_{n \times n}}, \Lambda_{2_{n \times n}} = \begin{bmatrix} l_{1} & \; & \; \\ \; & \ddots & \; \\ \; & \; & l_{n} \\ \end{bmatrix}. $$
(6)

Nonzero eigenvalues of covariance matrices X X T, { λ 1, ...λ n }, and X T X, {l 1, ...l n }, are the same and eigenvectors corresponding to the higher dimensional covariance matrix, {q 1, ...q n }, can be derived from the eigenvectors of the smaller one, {p 1, ...p n }. This useful information can be used in cases where the number of data points is a lot higher than the number of observations. Here we present a proof of this fact.

Using Eq. 4 as a beginning point,

$$ X \; C_{2} \; X^{T} = \underbrace{X \; X^{T}} \; \underbrace{X \; X^{T}}, $$
(7)
$$ X \; C_{2} \; X^{T} = C_{1} \; C_{1}, $$
(8)
$$ X \; P \; \Lambda_{2} \; P^{T} \; X^{T} = Q \; \Lambda_{1} \; Q^{T} \; Q \; \Lambda_{1} \; Q^{T}, $$
(9)
$$ X \; P \; \Lambda^{1/2}_{2} \; \Lambda^{1/2}_{2} \; P^{T} \; X^{T} = Q \; \Lambda_{1} \; \Lambda_{1} \; Q^{T},$$
(10)
$$ \left( X \; P \; \Lambda^{1/2}_{2} \right) \left( X \; P \; \Lambda^{1/2}_{2} \right)^{T} = \left( Q \; \Lambda_{1} \right) \left( Q \; \Lambda_{1} \right)^{T}, $$
(11)

can be obtained. Equation 11 can be further used,

$$ X \; P \; \Lambda^{1/2}_{2} = Q \; \Lambda_{1} $$
(12)
$$ X \; P \; \Lambda^{1/2}_{2} \; Q^{T} = Q \; \Lambda_{1} \; Q^{T} $$
(13)
$$ X \; P \; \Lambda^{1/2}_{2} \; Q^{T} = X \; X^{T} $$
(14)
$$ P \; \Lambda^{1/2}_{2} \; Q^{T} = X^{T} $$
(15)
$$ P^{T} \; P \; \Lambda^{1/2}_{2} \; Q^{T} = P^{T} \; X^{T} $$
(16)
$$ \Lambda^{1/2}_{2} \; Q^{T} = P^{T} \; X^{T} $$
(17)
$$ Q \; \Lambda^{1/2}_{2} = X \; P, $$
(18)

and a relationship between P and Q can be reached. Using Eq. 4 again,

$$ X^{T} \; X = P \; \Lambda_{2} \; P^{T} $$
(19)
$$ P^{T} \; X^{T} \; X = P^{T} \; P \; \Lambda_{2} \; P^{T} $$
(20)
$$ P^{T} \; X^{T} \; X = \Lambda_{2} \; P^{T} $$
(21)
$$ P^{T} \; X^{T} \; X \; P = \Lambda_{2} \; P^{T} \; P $$
(22)
$$ P^{T} \; X^{T} \; X \; P = \Lambda_{2}$$
(23)
$$ (X \; P)^{T} \; (X \; P) = \Lambda_{2}$$
(24)
$$ \parallel X \; P \parallel^{2} = \Lambda_{2}$$
(25)
$$ \parallel X \; P \parallel = \Lambda^{1/2}_{2}. $$
(26)

Using Eq. 26 in Eq. 18,

$$ Q = \frac{X \; P}{\parallel X \; P \parallel} $$
(27)

can be obtained. The same equation is valid for every column separately and can be expressed as,

$$ q_{i} = \frac{X \; p_{i}}{\parallel X \; p_{i} \parallel}. $$
(28)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demirci, O., Clark, V.P., Magnotta, V.A. et al. A Review of Challenges in the Use of fMRI for Disease Classification / Characterization and A Projection Pursuit Application from A Multi-site fMRI Schizophrenia Study. Brain Imaging and Behavior 2, 207–226 (2008). https://doi.org/10.1007/s11682-008-9028-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-008-9028-1

Keywords

Navigation