Skip to main content
Log in

Particles Spreading Phenomena in the Case of Glass Thermal Spraying

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

The spreading phenomena of particles during thermal spraying are quite difficult to observe given the kinetics of the process. In this work, the splat formation of glass and alumina is theoretically compared, showing that glass transition and low-thermal conductivity yield a higher ratio between cooling and flattening times, which strongly modifies their spreading behavior. Wipe tests show that splash—splat transition temperature can be modified by the glass composition and its subsequent hydrodynamic properties. The detection of peculiar remaining objects, such as fibers and wavelets shows the possibility of “freezing” some phenomena that are totally unobservable with crystalline oxides, except with high-velocity observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

a,b:

Empirical flattening coefficients, dimensionless

c:

Wavelets speed, m/s

Cp:

Heat capacity of the particle in the liquid phase, J/kg.K

D:

Initial diameter of the particle, m

Dsplat :

Splat diameter, m

e:

Flattened film thickness, m

f:

Frequency of wavelets, s−1

F:

Degree of fragmentation, dimensionless

g:

Gravity constant, m/s2

K:

Sommerfeld number, dimensionless

l:

Wavelength, m

lC :

Critical wavelength value before obtaining gravitational predominance, m

L:

Latent heat of transformation, J/kg

\( {\cal L}\) :

Travel distance of wavelets, m

\( \ifmmode\expandafter\dot\else\expandafter\.\fi{m} \) :

Particles mass flow rate, kg/s

N:

Number of impinging particles during ttransf

Nu:

Nusselt number, dimensionless

P:

Probability, dimensionless

Re:

Reynolds number, dimensionless

Ssplat :

Surface area of splat, m2

Sexposed :

Substrate surface area exposed to impinging particles, m2

Tg :

Glass transition temperature, °C

Ts:

Substrate temperature, °C

Tglazing :

Typical glazing temperature, °C

Tparticle :

Particle temperature, °C

Ttransformation :

Change of state temperature, °C

\( {\cal T}\) :

Period between wavelets, s

ttransf :

Cooling time, s

tsplat :

Flattening time, s

U:

Spreading velocity, m/s

V:

Particle velocity, m/s

Vi :

Volume of a size class of particles, m3

Vtotal :

Total volume of particles, m3

We:

Weber number, dimensionless

ΔT:

Temperature gap between particle and transformation temperatures, °C

ξ:

Spreading factor, dimensionless

ρ:

Particle density, kg/m3

λ:

Thermal conductivity, W/m K

μ:

Particle viscosity, Pa.s

σ:

Surface tension, N/m

Ξ:

Ratio between cooling and flattening time, dimensionless

Ψ:

Feedstock intrinsic prefactor for Ξ and ttransf

Ω:

Wavelet pulsation, rad/s

References

  1. D. Gawne, Y. Bao, and T. Zhang, The Effect of Substrate Temperature on the Adhesion of Plasma Sprayed Borosilicate Glass Coatings, Thermal Spray. A United Forum for Scientific and Technological Advances, C. Berndt, Ed., ASM International, Indianapolis, IN, 1997, p 467-472

    Google Scholar 

  2. D. Gawne, Z. Qiu, T. Zhang, Y. Bao, and K. Zhang, Abrasive Wear Resistance of Plasma Sprayed Glass-Composite Coatings, Thermal Spray: Surface Engineering Via Applied Research, C. Berndt, Ed., TSS, DVS and IIW, Montreal, Quebec, 2000, p 977-981

    Google Scholar 

  3. T. Zhang, Y. Bao, D.T. Gawne, Process Model of Plasma Enamelling, J. Eur. Ceram. Soc. 23 (2003) 1019-1026

    Article  CAS  Google Scholar 

  4. Y. Bao, T. Zhang, and D. Gawne, Analysis of Residual Stress Generated During Plasma Spraying of Glass Coatings, ITSC 98, Nice, France

  5. T. Zhang, Z. Qiu, Y. Bao, D. Gawne, and K. Zhang, Temperature Profiles and Thermal Stress Analysis of Plasma Sprayed Glass-Composite Coatings, Thermal Spray: Surface Engineering Via Applied Research, C. Berndt, Ed., TSS, DVS and IIW, Montreal, Quebec, 2000, p 355-361

    Google Scholar 

  6. T.M. Lee, E. Chang, B.C. Wang, C.Y. Yang, Characteristics of Plasma-Sprayed Bioactive Glass Coatings on Ti-6A1-4V Alloy: An In Vitro Study, Surf. Coat. Technol. 79 (1996) 170-177

    Article  CAS  Google Scholar 

  7. E. Verne, M. Ferraris, A. Ventrella, L. Paracchini, Sintering, Plasma Spray Deposition of Bioactive Glass-Matrix Composites for Medical Applications, J. Eur. Cer. Soc., 18 (1998) 363-372

    Article  CAS  Google Scholar 

  8. E. Verne, M. Ferraris, C. Jana, L. Paracchini, Bioverit1 I Base Glass/Ti Particulate Biocomposite: In Situ Vacuum Plasma Spray Deposition, J. Eur. Cer. Soc. 20 (2000) 473-479

    Article  CAS  Google Scholar 

  9. G.Z. Komskii and G. Saakov, Forming Decorative Protective Coatings by Plasma Spraying, Steklo I keramika no. 4, p 22-24, Izdatel’stvo Lad’ia, Moscow, Russia, April 1991

  10. V.S. Bessmertnyi, V.P. Krokhin, V.A. Panasenko, N.A. Drizhd, P.S. Dyumina, O.M. Kolchina, Plasma Rod Decorating of Household Glass. Glass Ceram., 2001, 58, 214-215

    Article  CAS  Google Scholar 

  11. J. Tikkanen, M. Eerola, M. Rajala, Coating Glass by Flame Spraying, J. Non-Cryst. Solids, 178, 1994, p 220-226

    Article  CAS  Google Scholar 

  12. G. Bolelli, V. Cannillo, L. Lusvarghi, Plasma-Sprayed Glass-Ceramic Coatings on Ceramic Tiles: Microstructure, Chemical Resistance, Mechanical Properties, J. Eur. Cer. Soc. 25(2005) 1835-1853

    Article  CAS  Google Scholar 

  13. G. Bolelli, L. Lusvarghi, T. Manfredini, C. Siligardi, Influence of the Manufacturing Process on the Crystallization Behaviour of CZS Glass System, J. Non-Cryst. Solids 351 (2005) 2537-2546

    Article  CAS  Google Scholar 

  14. T. Valente, C. Bartulli, and A. Loreto, Plasma Sprayed Nanostructured Glass Ceramic Matrix Composite Coatings from the CaO-SiO2-ZrO2 Eutectic System, ITSC 2004, Osaka, 10-12/05/2004

  15. S.H. Leigh, C. Berndt, Quantitative Evaluation of Void Distributions Within a Plasma-Sprayed Ceramic, J. Am. Ceram. 82 17-21 (1999)

    Article  CAS  Google Scholar 

  16. S. Deshpande, A. Kulkarni, S. Sampath, H. Herman, Application of Image Analysis for Characterization of Porosity in Thermal Spray Coatings and Correlation with Small Angle Neutron Scattering, Surf. Coat. Technol. 187 (2004) 6-16

    Article  CAS  Google Scholar 

  17. A. Refke, D. Hawley, J. Doesburg, and R.K. Schmid, LPPS Thin Film Technology for the Application of TBC Systems, ITSC 2005, E. Lugscheider, Ed., May 2-4, 2005, Basel, Switzerland, 6 pages

  18. V.S. Bessmertnyi, N.I. Min’ko, V.N. Glaz, P.S. Dyumina, V.P. Krokhin, M.A. Trubitsin, The Effect of Argon Plasma on Reduction of Variable-Valence Oxides in Synthesis of Minerals, Glass Ceram., 2004, 61(1-2), p 63-64

    Article  CAS  Google Scholar 

  19. S. Dallaire, B. Arsenault, A. De Santis, Investigation of Plasma Sprayed Coatings for Bonding Glass to Metal in Hermetic Seal Applications, Surf. Coat. Technol., 53 (1992) 129-135

    Article  CAS  Google Scholar 

  20. G. Bolelli, L. Lusvarghi, T. Manfredini, C. Siligardi, Influence of the Manufacturing Process on the Crystallization Behaviour of CZS Glass System, J. Non-Cryst. Solids 351 (2005) 2537-2546

    Article  CAS  Google Scholar 

  21. G. Bayrak, S. Yilmaz, Crystallization Kinetics of Plasma Sprayed Basalt Coatings, Ceram. Int. 32 (2006) 441-446

    Article  CAS  Google Scholar 

  22. G. Bolelli, V. Canillo, L. Lusvarghi, T. Manfredini, Glass-Alumina Composite Coatings by Plasma Spraying. Part I: Microstructural and Mechanical Characterization, Surf. Coat. Technol. 201 (2006) 458-473

    Article  CAS  Google Scholar 

  23. G. Bolelli, V. Canillo, L. Lusvarghi, T. Manfredini, M. Montorsi, Glass-Alumina Composite Coatings by Plasma Spraying. Part II: Microstructure-Based Modeling of Mechanical Properties, Surf. Coat. Technol. 201 (2006) 474-486

    Article  CAS  Google Scholar 

  24. V. Cannillo, T. Manfredini, M. Montorsi, C. Siligardi, A. Sola, Microstructure-Based Modelling and Experimental Investigation of Crack Propagation in Glass-Alumina Functionally Graded Materials, J. Eur. Cer. Soc. (2006) 26, 3067-3073

    Article  CAS  Google Scholar 

  25. H. Zhang, X.Y. Wang, L.L. Zheng, X.Y. Jiang, Studies of Splat Morphology and Rapid Solidification During Thermal Spraying, Int. J. Heat Mass Trans. 44 (2001) 4579-4592

    Article  CAS  Google Scholar 

  26. D.R. Lide, Ed., CRC Handbook of Chemistry and Physics, CRC press, London, 1995, p 12-182

  27. P. Fauchais, M. Fukumoto, A. Vardelle, M. Vardelle, Knowledge Concerning Splat Formation: An Invited Review, JTST, 13(3) 2004 337-357

    Article  CAS  Google Scholar 

  28. C.J. Li, H. Liao, P. Gougeon, G. Montavon, C. Coddet, Experimental Determination of the Relationship Between Flattening Degree and Reynolds Number for Spray Molten Droplets, Surf. Coat. Technol. 191 (2005) 375-383

    Article  CAS  Google Scholar 

  29. K. Shinoda, T. Koseki, and T. Yoshida, Influence of Impact Parameters of Zirconia Droplets on Splat Formation and Morphology in Plasma Spraying, J. Appl. Phys., 2006, 100(7), Art. No. 074903

  30. C. Escure, “Impact Study of Liquid Alumina Droplets onto a Hot Substrate or a Liquid Alumina Film,” Ph.D. Thesis, Université de Limoges, November 2000, 55-2000 (in french)

  31. G.J. Browning, G.W. Bryant, H.J. Hurst, J.A. Lucas, T.F. Wall, An Empirical Method for the Prediction of Coal Ash Slag Viscosity, Energy Fuels 2003, 17, 731-737

    Article  CAS  Google Scholar 

  32. M. Vardelle, A. Vardelle, A.C. Léger, and P. Fauchais, Dynamics of Splat Formation and Solidification in Thermal Spraying Processes, Proceedings of the 7th NTSC, 20-24/06/1994, Boston, MS, p 555-562

  33. C. Kang, H. Ng, Splat Morphology and Spreading Behavior due to Oblique Impact of Droplets onto Substrates in Plasma Spray Coating Process, Surf. Coat. Technol. 200 (2006) 5462-5477

    Article  CAS  Google Scholar 

  34. K. Shinoda, Y. Kojima, T. Yoshida, In Situ Measurement System for Deformation and Solidification Phenomena of Yttria-Stabilized Zirconia Droplets Impinging on Quartz Glass Substrate Under Plasma Spraying Conditions, J. Therm. Spray Technol., 2005, 14 (4), p 511-517

    Article  CAS  Google Scholar 

  35. T. Lakatos, Viscosity-Temperature Relations in Glasses Composed of SiO2-Al2O3-Na2O-K2O-Li2O-CaO-MgO-BaO-ZnO-PbO-B2O3, Glastecknisk Tidskrift, 31 (1976) 3, 51-54

    CAS  Google Scholar 

  36. T. Lakatos, The Effect of Some Glass Components on the Viscosity of Glass, Glastecknisk Tidskrift, 27 (1972) 2, 25-28

    Google Scholar 

  37. E. Tillotson, On the Surface Tension of Silicate and Borosilicate Glasses, J. Ind. Eng. Chem., 1912, 4(9) 651-652

    Article  Google Scholar 

  38. A.G. Clare, D. Wing, L.E. Jones, A. Kucuk, Density and Surface Tension of Borate Containing Silicate Glass Melts, Glass Technol.—Eur. J. Glass Sci. Technol. Part A, 44(2), 2003, 59-62

    CAS  Google Scholar 

  39. X. Shi, Q. Wang, X. Niu, C. Li, K. Lu, An Examination of Surface Tension of Binary Lithium Borate Melts as a Function of Composition and Temperature, JACS, 89 (10) 3222-3228 (2006)

    Article  CAS  Google Scholar 

  40. W.D. Kingery, H. Bowen, D.R. Uhlmann, Introduction to Ceramics, John Wiley & sons, New York, 1960, p 284

    Google Scholar 

  41. T. Seward, Modeling of Glass Making Processes for Improved Efficiency: Final Report, DE-FG07-96EE41262, 2003

  42. A. Priven, General Method for Calculating the Properties of Oxide Glass Forming Melts from Their Composition and Temperature, Glass Technol., 2004, 45 (6) 244-54

    CAS  Google Scholar 

  43. B. Dussoubs, A. Vardelle, D. Gobin, and P. Fauchais, Solidification and Cooling of a Plasma Sprayed Droplet: Determination of Cooling Velocity, Journée SFT’95, Société Française de Thermique, Limoges, France, p 361-366 (in French)

  44. H. Jones, Cooling, Freezing and Substrate Impact of Droplets Formed by Rotary Atomization, J. Phys. D Appl. Phys., 1971, 4, 1657

    Article  CAS  Google Scholar 

  45. M. Fukumoto, S. Katoh, and I. Okane, Splat Behaviour of Plasma Sprayed Particles on Flat Substrate, Thermal Spraying: Current Status and Future Trends, A. Ohmori, Ed., High Temperature Society of Japan, Kobe, Japan, 1995, vol. 1, p 353-358

  46. Z. Liu, R. Reitz, Modelling Fuel Spray Impingement and Heat Transfer Between Spray and Wall in Direct Injection Diesel Engines, Numer. Heat Transfer, Part A, 1995, 28, p 515-529

    Article  Google Scholar 

  47. S. Schiaffino, A. Sonin, Molten Droplet Deposition and Solidification at Low Weber Numbers, Phys. Fluids, 9(11) (1997) p 3172-3187

    Article  CAS  Google Scholar 

  48. X. Jiang, Y. Wan, H. Hermann, S. Sampath, Role of Condensates and Adsorbates on Substrate Surface on Fragmentation of Impinging Molten Droplets During Thermal Spraying, Thin Solid Films 385 (2001) 132

    Article  CAS  Google Scholar 

  49. A. McDonald, M. Lamontagne, C. Moreau, S. Chandra, Impact of Plasma-Sprayed Metal Particles on Hot and Cold Glass Surfaces, Thin Solid Films, 2006, 514 (1-2), 212-222

    Article  CAS  Google Scholar 

  50. L. Li, A. Vaidya, S. Sampath, H. Xiong, L. Zheng, Particle Characterization and Splat Formation of Plasma Sprayed Zirconia, JTST, 2006, 15(1), p 97-105

    Article  CAS  Google Scholar 

  51. L. Bianchi, “Projection ar plasma d’arc et plasma inductif de dépôts céramiques: mécanisme de formation de la premièrecouche et relation avec les propriétés mécaniques des dépôts”, Ph.D. Thesis, Université de Limoges, January 1995, p 41-1995 (in French)

  52. K. Shinoda, A. Yamada, M. Kambara, Y. Kojima, T. Yoshida, Deformation of Alumina Droplets on Micro-Patterned Substrates Under Plasma Spraying Conditions, J. Therm. Spray Technol., 2007, 16(2), p 300-305

    Article  CAS  Google Scholar 

  53. A. Navrotsky, Thermodynamic Properties of Minerals, Mineral Physics and Crystallography: A Handbook of Physical Constants, American Geophysical Union, Washington, DC, 1995, p 18-28

  54. A. Kucuk, A.G. Clare, L.E. Jones, Differences Between the Surface and Bulk of Glass Melts. Part 2. Influence of Redox Ratio on the Surface Properties of Silicate Melts, Phys. Chem. Glasses—Eur. J. Glass Sci. Technol. Part B, 2000, 41(2), p 75-80

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Philippe Belleudy at Université Joseph Fourier (Grenoble), George « Bud » Homsy at University of California (Santa Barbara) and Marc Rabaud at Université Paris-Sud (Orsay) for their kind assessment about hydrodynamic aspects of wavelets in splats. Technical help from Pierre Bertrand and Pascale Hoog, and bibliographical help from Martine Coddet are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Poirier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poirier, T., Planche, M.P., Landemarre, O. et al. Particles Spreading Phenomena in the Case of Glass Thermal Spraying. J Therm Spray Tech 17, 564–573 (2008). https://doi.org/10.1007/s11666-008-9211-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-008-9211-3

Keywords

Navigation