Skip to main content
Log in

Effect of Stretch Orientation and Rolling Orientation on the Mechanical Properties of 2195 Al-Cu-Li Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Sheets of 2195 aluminum-lithium alloy were solution-treated at 507 °C for 30 min. One set was stretched to 3-5% in the 0°, 45°, and 90° angle with respect to the original rolling direction. Two other sets were rolled 6% reduction in thickness and 24% reduction in thickness in the 0°, 45°, and 90° angle with respect to the original rolling direction. All specimens were aged at 143 °C for 36 h. A second group of samples was rolled at 24 and 50% reduction in thickness after a solution treatment of 507 °C for 1 h prior to aging at 190 °C for 24 h. Tensile specimens were machined from each sheet at 0°, 45°, and 90° angles to the original grain orientation. Tensile testing was used to determine the mechanical properties and anisotropic behavior of each condition. Rolling 6% reduction in thickness in the 45° orientation yielded anisotropy of 7.6% in the yield strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z.X. Li, R.A. Mirshams, E.A. Kenik, and P.J. Hartley, Effect of Stretching Prior to Aging on Mechanical Properties in Al-Cu-Li (2195) Alloy, Light Weight Alloys for Aerospace Applications IV, E.W. Lee, K.V. Jata, W.E. Frazier, and N.J. Kim, Ed., TMS, Orlando, 1997, p 117–127

    Google Scholar 

  2. E.A. Starke Jr. and B.N. Bhat, Technical Summary, Aluminum-Lithium Alloys for Aerospace Application Workshop. B.N. Bhat, T.T. Bayles, and E.J. Vesely, Jr., Ed., December 1994, p 1–2

  3. R.J. Schwinghammer, Deputy Director of Space transportation systems, NASA-George C. Marshall space flight center, Opening Remarks, Alumminum-Lithium Alloys for Aerospace Applications Workshop. B.N. Bhat, T.T. Bayles, and E.J. Vesely, Jr., Ed., December 1994, p 1–2

  4. N. Jiang, X. Gao, and Z.-q. Zheng, Microstructure Evolution of Aluminum-Lithium Alloy 2195 Undergoing Commercial Production, Trans. Nonferrous Met. Soc. China, 2010, 20, p 740–745

    Article  CAS  Google Scholar 

  5. J.H. Sanders, Investigation of Grain Boundary Chemistry in Al-Li 2195 Welds Using Auger Electron Spectroscopy, Thin Solid Films, 1996, 277(1/2), p 121–127

    Article  CAS  Google Scholar 

  6. M.C. Chaturvedi and D.L. Chen, Effect of Specimen Orientation and Welding on the Fracture and Fatigue Properties of 2195 Al-Li Alloy, Mater. Sci. Eng., 2004, 387(389), p 465–469

    Google Scholar 

  7. I.K. Hall and D.B. Sisk, Aluminum-Lithium Alloy 2195 Revision Aging Study, Aluminum-Lithium alloys for Aerospace application workshop. B.N. Bhat, T.T. Bayles, and E.J. Vesely, Jr., Ed., December 1994, p 114–120

  8. T.J. Langan, P.E. McCubbin, and J.R. Pickens, Environmentally Assisted Cracking and Localized Corrosion Susceptibility for Aluminum Alloys 2195 and 2219, Aluminum-Lithium Alloys for Aerospace Applications Workshop. B.N. Bhat, T.T. Bayles, and E.J. Vesely, Jr., Ed., December 1994, p 114–120

  9. K.H. Hou, W.A. Baeslack III, J.C. Lippold, and A. Szabo, Microstructure Evolution in the Heat-Affected Zone of a Gas Tungsten-Arc Welded Al-2195, Aluminum-Lithium Alloys for Aerospace Application Workshop. B.N. Bhat, T.T. Bayles, and E.J. Vesely, Jr., Ed., December 1994, p 288–298

  10. R.G. Thompson, Analysis of Weld Hot Cracks in Al-Li Alloy 2195, Aluminum-Lithium alloys for Aerospace Application Workshop. B.N. Bhat, T.T. Bayles, and E.J. Vesely, Jr., Ed., December 1994, p 246–298

  11. P.C. Bastias, M. Diehm, G.T. Hahn, K-Y. Kim, M. Kral, S.R. Shah, J.E. Witting, Analysis of the 2195 Aluminum-Lithium Alloy Weld Microstructure and Fracture Behavior, Aluminum-Lithium Alloys for Aerospace Application Workshop. B.N. Bhat, T.T. Bayles, and E.J. Vesely, Jr., Ed., December 1994, p 205–214

  12. R.M Diwan, P.D. Torres, and T. Malone, Stress Corrosion Cracking and Microstructure Evaluation and Aluminum Lithium Alloy 2195-RT 70 Variable Polarity Plasma Arc (VPPA) Weldments, Aluminum-Lithium Alloys for Aerospace Application Workshop. B.N. Bhat, T.T. Bayles, and E.J. Vesely, Jr., Ed., December 1994, p 144–154

  13. J.E. Dyer, D.B. Sisk, and I.K. Hall, Near-net forging of aluminum-lithium alloy 2195, Aluminum-Lithium Alloys for Aerospace Applications Workshop. B.N. Bhat, T.T. Bayles, and E.J. Vesely, Jr., Ed., December 1994, p 309–318

  14. S.J. Hales and R.A. Hafley, “Structure-Property Correlations in Al-Li Alloy Integrally Stiffened Extrusions,” Technical Report, NASA, 2001, tp210839

  15. W.M. Johnston, W.D. Pollock, and D.S. Dawicke. “Biaxial Testing of 2195 Aluminum Lithium Alloy Using Cruciform Specimens,” NASA, 2002, 211942

  16. M.L. Bairwa, S..G. Desai, and P.P. Date, Identification of Heat Treatments for Better Formability in an Aluminum-Lithium Alloy Sheet, JMEPEG, 2005, 14, p 623–633

    Article  CAS  Google Scholar 

  17. R. Rioja, Fabrication Methods to Manufacture Isotropic Al-Li Alloys and Products for Space and Aerospace Applications, Mater. Sci. Eng., 1998, A257, p 100–107

    CAS  Google Scholar 

  18. N.J. Kim and E.W. Lee, Effect of T1 Precipitate on the Anisotropy of Al-Li Alloy 2090, Acta Metall. Mater., 1993, 41, p 941

    Article  CAS  Google Scholar 

  19. A. Cho, A Method of Minimizing Strength Anisotropy in Aluminum-Lithium Alloy Wrought Product by Cold Rolling, Stretching and Aging. US Patent 5,439,536. 28 Feb 1995

  20. A. Cho, A Method of Minimizing Strength Anisotropy in Aluminum-Lithium Alloy Wrought Product by Cold Rolling, Stretching And Aging, US Patent 5,393,536,357, 8 Aug 1995

  21. O.S. Es-Said and E.W. Lee, The Effect Of Stretch Orientation (and Rolling Mode) on the Tensile Behavior of 2095 Aluminum-Lithium Alloy, Light Weight Alloys for Aerospace Applications III, E.W. Lee, K.V. Jata, W.E. Frazier, N.J. Kim, Ed., TMS, 1995, p 57–64

  22. E.W. Lee, P.N. Kalu, L. Brandao, O.S. Es-Said, J. Foyos, and H. Garmestani, The Effect of Off-Axis Thermo-Mechanical Processing on the Mechanical Behavior of Textured 2095 Al-Li Alloy, Mater. Sci. Eng., 1999, A265, p 100–109

    CAS  Google Scholar 

  23. “MatWeb—The Online Materials Information Resource.” Online Materials Information Resource—MatWeb. N.p., n.d. Web. 20 April 2010, http://www.matweb.com/search/DataSheet.aspx?MatGUID=4363dafc7f5545688506d8b4af1e9468&ckck=1

  24. O.S. Es-Said, F. Fisher, D. Johansen, J. Quattrocchi, D. Raizk, C. Venture, K. Zakharia, D. Ruhl, N. Khankan, M. Rajabi, R. Archilla, and H. Petel, The Effect of Stretch Orientation (and Rolling Mode) on the Tensile Behavior of 2095 Aluminum-Lithium alloy, J. Mater. Eng. Perform., 1994, 3(2), p 292–299

    Article  CAS  Google Scholar 

  25. M. Trinca, A. Avaliano, H. Garmestani, J. Foyos, E.W. Lee, and O.S. Es-Said, Effect of Rolling Orientation on the Mechanical Properties and Crystallographic Texture or 2195 Aluminum-Lithium Alloy, Materials Science Forum, 2000, 331337, p 849–854, 2000 Trans Tech Publications, Switzerland

  26. F. Barlat and O. Richmond, Prediction of Tricomponent Plane Stress Yield Surfaces and Associated Flow and Failure Behavior of Strongly Textured F.C.C. Polycrystalline Sheets, Mater. Sci. Eng., 2000, 95, p 15–29

    Google Scholar 

  27. E.N. Prasad, A.A. Gokhale, and P. Rama Rao, Mechanical Behaviour of Aluminum-Lithium Alloys, Sadhana, 2003, 28, p 229–246

    Article  Google Scholar 

  28. K. Jata, A. Hopkins, and R. Rioja, The Anisotropy and Texture of Al-Li Alloys, Materials Science Forum., 1996, 217–222, p 647–652

    Article  Google Scholar 

  29. K.E. Crosby, R.A. Mirshams, and S. Pang, Crystallographic Texture and Yield Behaviour of Al-Cu-Li (2195) Plate, Mater. Res. Soc. Symp. Proc., 2000, 578, p 439–444

    Article  CAS  Google Scholar 

  30. K.E. Crosby, R.A. Mirshams, and S.S. Pang, Development of Texture and Texture Gradient in Al-Cu-Li (2195) Thick Plate, J. Mater. Sci., 2000, 35, p 3189–3195

    Article  CAS  Google Scholar 

  31. A. Fjeldly and H.J. Roven, Observations, Calculations on Mechanical Anisotropy, Plastic Flow of an AlZnMg Extrusion, Acta Mater., 1996, 44(9), p 3497–3504

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Science Foundation, NSF Grant No. EEC-9732046, Research Experience for Undergraduates (REU) site.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Es-Said.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Es-Said, O.S., Parrish, C.J., Bradberry, C.A. et al. Effect of Stretch Orientation and Rolling Orientation on the Mechanical Properties of 2195 Al-Cu-Li Alloy. J. of Materi Eng and Perform 20, 1171–1179 (2011). https://doi.org/10.1007/s11665-010-9746-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-010-9746-6

Keywords

Navigation