Skip to main content
Log in

The Role of Elastic and Plastic Anisotropy of Sn in Recrystallization and Damage Evolution During Thermal Cycling in SAC305 Solder Joints

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Because failures in lead-free solder joints occur at locations other than the most highly shear-strained regions, reliability prediction is challenging. To gain physical understanding of this phenomenon, physically based understanding of how elastic and plastic deformation anisotropy affect microstructural evolution during thermomechanical cycling is necessary. Upon solidification, SAC305 (Sn-3.0Ag-0.5Cu) solder joints are usually single or tricrystals. The evolution of microstructures and properties is characterized statistically using optical and orientation imaging microscopy. In situ synchrotron x-ray measurements during thermal cycling are used to examine how crystal orientation and thermal cycling history change strain history. Extensive characterization of a low-stress plastic ball grid array (PBGA) package design at different stages of cycling history is compared with preliminary experiments using higher-stress package designs. With time and thermal history, microstructural evolution occurs mostly from continuous recrystallization and particle coarsening that is unique to each joint, because of the specific interaction between local thermal and displacement boundary conditions and the strong anisotropic elastic, plastic, expansion, and diffusional properties of Sn crystals. The rate of development of recrystallized microstructures is a strong function of strain and aging. Cracks form at recrystallized (random) boundaries, and then percolate through recrystallized regions. Complications arising from electromigration and corrosion are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T.R. Bieler, H. Jiang, L.P. Lehman, T. Kirkpatrick, E.J. Cotts, and B. Nandagopal, IEEE Trans. Compon. Packag. Technol. 31, 370 (2008).

    Article  CAS  Google Scholar 

  2. T.R. Bieler, H. Jiang, L.P. Lehman, T. Kirkpatrick, and E.J. Cotts, 2006 Proceedings. 56th Electronic Components & Technology Conference (IEEE Cat. No. 06CH37766C) (2006), p. 6.

  3. L.P. Lehman, S.N. Atavale, T.Z. Fullem, A.C. Giamis, R.K. Kinyanjui, M. Lowenstein, K. Mather, R. Patel, D. Rae, J. Wang, Y. Xing, L. Zavalij, P. Borgesen, and E.J. Cotts, J. Electron. Mater. 33, 1581 (2004).

    Article  Google Scholar 

  4. L.P. Lehman, Y. Xing, T.R. Bieler, and E.J. Cotts, Acta Mater. 58, 3546 (2010).

    Article  CAS  Google Scholar 

  5. K.S. Kim, S.H. Huh, and K. Suganuma, Mater. Sci. Eng. A333, 106 (2002).

    CAS  Google Scholar 

  6. R. Kinyanjui, L.P. Lehman, L. Zavalij, and E. Cotts, J. Mater. Res. 20, 2914 (2005).

    Google Scholar 

  7. S. Terashima, T. Kobayashi, and M. Tanaka, Sci. Technol. Weld. Join. 13, 732 (2008).

    Article  CAS  Google Scholar 

  8. Sun.-Kyoung. Seo, Sung.K. Kang, Moon.Gi. Cho, Da.-Yuan. Shih, and Hyuck.Mo. Lee, J. Electron. Mater. 38, 2461 (2009).

    Article  CAS  Google Scholar 

  9. D.W. Henderson, J.J. Woods, T.A. Gosselin, J. Bartelo, D.E. King, T.M. Korhonen, M.A. Korhonen, L.P. Lehman, E.J. Cotts, Sung.K. Kang, P. Lauro, Da-Yuan Shih, C. Goldsmith, and K.P. Puttlitz, J. Mater. Res. 19, 1608 (2004).

    Article  CAS  Google Scholar 

  10. J.J. Sundelin, S.T. Nurmi, and T.K. Lepisto, Mater. Sci. Eng. A 474, 201 (2008).

    Article  Google Scholar 

  11. J. Li, H. Xu, T.T. Mattila, J.K. Kivilahti, T. Laurila, and M. Paulasto-Krockel, Comput. Mater. Sci. 50, 690 (2010).

    Article  CAS  Google Scholar 

  12. T.T. Mattila and J.K. Kivilahti, IEEE Trans. Compon. Packag. Technol. 33, 629 (2010).

    Article  CAS  Google Scholar 

  13. J. Li, H. Xu, T.T. Mattila, J.K. Kivilahti, T. Laurila, and M. Paulasto-Kröckel, Comput. Mater. Sci. 50, 690 (2010).

    Article  CAS  Google Scholar 

  14. T.T. Nguyen, D. Yu, and S.B. Park, J. Electron. Mater. 40, 1409 (2011).

    Article  CAS  Google Scholar 

  15. I. Dutta, D. Pan, R.A. Marks, and S.G. Jadhav, Mater. Sci. Eng. A 410–411, 48 (2005).

    Google Scholar 

  16. G. Cuddalorepatta and A. Dasgupta, Acta Mater. 58, 5989 (2010).

    Article  CAS  Google Scholar 

  17. T.R. Bieler, B. Zhou, L. Blair, A. Zamiri, P. Darbandi, F. Pourboghrat, T.-K. Lee, and K.-C. Liu, Paper 5F.1 (Piscataway, NJ: IRPS/IEEE, 2011), p. IRPS11-573-81.

  18. T.-K. Lee, K.-C. Liu, and T.R. Bieler, J. Electron. Mater. 38, 2685 (2009).

    Article  CAS  Google Scholar 

  19. B. Zhou, T.R. Bieler, T.-K. Lee, and K.-C. Liu, J. Electron. Mater. 38, 2702 (2009).

    Article  CAS  Google Scholar 

  20. T.R. Bieler, T.-K. Lee, and K.C. Liu, J. Electron. Mater. 38, 2712 (2009).

    Article  CAS  Google Scholar 

  21. T.-K. Lee, Bi. Zhou, L. Blair, K.-C. Liu, and T.R. Bieler, Proceedings 2009 International Symposium on Microelectronics, IMAPS—International Microelectronics and Packaging Society, Washington DC (November 1–5, 2009, San Jose, California), p. 142.

  22. B. Zhou, T.R. Bieler, G. Wu, S. Zaefferer, T.-K. Lee, and K.-C. Liu, Proceedings 2009 International Symposium on Microelectronics, IMAPS—International Microelectronics and Packaging Society, Washington DC (November 1–5, 2009, San Jose, California), p. 158.

  23. T.-K. Lee, Bite Zhou, L. Blair, K.-C. Liu, and T.R. Bieler, J. Electron. Mater. 39, 2588 (2010).

    Article  CAS  Google Scholar 

  24. B. Zhou, T.R. Bieler, T.-K. Lee, and K.-C. Liu, J. Electron. Mater. 39, 2669 (2010).

    Article  CAS  Google Scholar 

  25. T.-K. Lee, H.T. Ma, K.-C. Liu, and J. Xue, J. Electron. Mater. 39, 2564 (2010).

    Article  CAS  Google Scholar 

  26. A.U. Telang, T.R. Bieler, S. Choi, and K.N. Subramanian, J. Mater. Res. 17, 2294 (2002).

    Article  CAS  Google Scholar 

  27. B. Zhou, T.R. Bieler, G. Wu, S. Zaefferer, T.-K. Lee, and K.-C. Liu (this volume). doi:10.1007/s11664-011-1785-8.

  28. I.E. Anderson, J.W. Walleser, J.L. Harringa, F. Laabs, and A. Kracher, J. Electron. Mater. 38, 2770 (2009).

    Article  CAS  Google Scholar 

  29. G.J. Jackson, H. Lu, R. Durairaj, N. Hoo, C. Bailey, N.N. Ekere, and J. Wright, J. Electron. Mater. 33, 1524 (2004).

    Article  CAS  Google Scholar 

  30. A.U. Telang, T.R. Bieler, and M.A. Crimp, Mater. Sci. Eng. A421, 22 (2006).

    CAS  Google Scholar 

  31. D.G. House and E.V. Vernon, Br. J. Appl. Phys. 11, 254 (1960).

    Article  CAS  Google Scholar 

  32. J.A. Rayne and B.S. Chandrasekhar, Phys. Rev. 118, 1545 (1960).

    Article  CAS  Google Scholar 

  33. V.T. Deshpande and D.B. Sirdeshmukh, Acta Cryst. 15, 294 (1962).

    Article  CAS  Google Scholar 

  34. M. Erinc, P.J.G. Schreurs, and M.G.D. Geers, Mech. Mater. 40, 780 (2008).

    Article  Google Scholar 

  35. M.A. Matin, W.P. Vellinga, and M.G.D. Geers, Mater. Sci. Eng. A 445, 44673 (2007).

    Google Scholar 

  36. S.-K. Seo, S.-K. Kang, M.-G. Cho, and H.-M. Lee, J. Mater. Res. 25, 1950 (2010).

    Article  CAS  Google Scholar 

  37. R. Darveaux, K. Banerji, and I.E.E.E. Trans Components, Hybrid. Manuf. Technol. 15, 1013 (1992).

    Article  CAS  Google Scholar 

  38. C.H. Raeder, R.W. Messler, and L.F. Coffin, J. Electron. Mater. 28, 1045 (1999).

    Article  CAS  Google Scholar 

  39. A.U. Telang, T.R. Bieler, A. Zamiri, and F. Pourboghrat, Acta Mater. 55, 2265 (2007).

    Article  CAS  Google Scholar 

  40. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Mater. Sci. Eng. A, 238219 (1997).

  41. D.C. Yeh and H.B. Huntington, Phys. Rev. Lett. 53, 1469 (1984).

    Article  CAS  Google Scholar 

  42. J.R. Lloyd, N.A. Connelly, He. Xiaoli, K.J. Ryan, and B.H. Wood, Microelectron. Reliab. 50, 1355 (2010).

    Article  CAS  Google Scholar 

  43. S. Choi, J. Lee, F. Guo, T.R. Bieler, K.N. Subramanian, and J.P. Lucas, JOM 53, 22 (2001).

    Article  CAS  Google Scholar 

  44. F. Yang and J.C.M. Li, J. Mater. Sci.: Mater. Electron. 18, 191 (2007).

    Article  CAS  Google Scholar 

  45. B. Düzgün, A.E. Ekinci, I. Karaman, and N. Ucar, J. Mech. Behav. Mater. 10, 187 (1999).

    Article  Google Scholar 

  46. A.E. Ekinci, N. Ucar, G. Cankaya, and B. Düzgün, Indian J. Eng. Mater. Sci. 10, 416 (2003).

    CAS  Google Scholar 

  47. Y. Kouhashi, Koenronbunshu, Vol. 12 (Sendai: Transactions of the Japanese Society for Strength and Fracture of Materials, 2000), p. 15.

  48. M. Fujiwara and T. Hirokawa, J. Jpn. Inst. Met. 51, 830 (1987).

    CAS  Google Scholar 

  49. R.L.J.M. Ubachs, P.J.G. Schreurs, and M.G.D. Geers, Mech. Mater. 39, 685 (2007).

    Article  Google Scholar 

  50. J. Gong, C. Liu, P.P. Conway, and V.V. Silberschmidt, Comput. Mater. Sci. 43, 199 (2008).

    Article  CAS  Google Scholar 

  51. A. Zamiri, T.R. Bieler, and F. Pourboghrat, J. Electron. Mater. 38, 231 (2009).

    Article  CAS  Google Scholar 

  52. W. Xie, Cisco Systems, Inc, San Jose, CA, unpublished research.

  53. A.U. Telang, T.R. Bieler, and M.A. Crimp, Mater. Sci. Eng. A421, 22 (2006).

    CAS  Google Scholar 

  54. A.U. Telang and T.R. Bieler, JOM 57, 44 (2005).

    Article  CAS  Google Scholar 

  55. L. Yin, L. Wentlent, L. Yang, B. Arfaei, A. Oasaimeh, and P. Borgesen, J. Electron. Mater. (this volume). doi:10.1007/s11664-011-1762-2.

  56. S.-K. Seo, S.K. Kang, M.G. Cho, and H.M. Lee, JOM 38, 22 (2010).

    Article  Google Scholar 

  57. K. Chen, N. Tamura, M. Kunz, K.N. Tu, and Y.-S. Lai, J. Appl. Phys. 106, 023502 (2009).

    Article  Google Scholar 

  58. W.H. Lin, Albert.T. Wu, S.Z. Lin, T.H. Chuang, and K.N. Tu, J. Electron. Mater. 36, 753 (2007).

    Article  CAS  Google Scholar 

  59. M. Lu, D.-Y. Shih, S.K. Kang, C. Goldsmith, and P. Flaitz, J. Appl. Phys. 106, 053509 (2009).

    Article  Google Scholar 

  60. C. Chen, H.M. Tong, and K.N. Tu, Ann. Rev. Mater. Res. 40, 531 (2010).

    Article  CAS  Google Scholar 

  61. T.-K. Lee, B. Liu, B. Zhou, T.R. Bieler, and K.-C. Liu, J. Electron. Mater. 40, 1895 (2011).

    Article  CAS  Google Scholar 

  62. M.D. Mathew, H. Yang, S. Movva, and K.L. Murty, Metall. Mater. Trans. A 36, 99 (2005).

    Article  Google Scholar 

  63. L.Z. Zhang, R. Dingreville, T. Bartel, and M.T. Lusk, Metall. Mater. Trans. A 42A, 575 (2011).

    Article  Google Scholar 

  64. N.N. Du, Y. Qi, P.E. Krajewski, and A.F. Bower, Metall. Mater. Trans. A 42A, 651 (2011).

    Article  Google Scholar 

  65. P.E. Krajewski, L.G. Hector, N.N. Du, and A.F. Bower, Acta Mater. 58, 1074 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas R. Bieler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bieler, T.R., Zhou, B., Blair, L. et al. The Role of Elastic and Plastic Anisotropy of Sn in Recrystallization and Damage Evolution During Thermal Cycling in SAC305 Solder Joints. J. Electron. Mater. 41, 283–301 (2012). https://doi.org/10.1007/s11664-011-1811-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1811-x

Keywords

Navigation