Skip to main content
Log in

Theoretical Study of Electronic Structure and Thermoelectric Properties of Doped CuAlO2

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The doping level dependence of thermoelectric properties of delafossite CuAlO2 has been investigated in the constant scattering time (τ) approximation, starting from the first principles of electronic structure. In particular, the lattice parameters and the energy band structure were calculated using the total energy plane-wave pseudopotential method. It was found that the lattice parameters of CuAlO2 are a = 2.802 Å and c = 16.704 Å, and the internal parameter is u = 0.1097. CuAlO2 has an indirect band gap of 2.17 eV and a direct gap of 3.31 eV. The calculated energy band structures were then used to calculate the electrical transport coefficients of CuAlO2. By considering the effects of doping level and temperature, it was found that the Seebeck coefficient S(T) increases with increasing acceptor doping (A d) level. The values of S(T) in our experiments correspond to an A d level at 0.262 eV, which is identified as the Fermi level of CuAlO2. Based on our experimental Seebeck coefficient and the electrical conductivity, the constant relaxation time is estimated to be 1 × 10−16 s. The power factor is large for a low A d level and increases with temperature. It is suggested that delafossite CuAlO2 can be considered as a promising thermoelectric oxide material at high doping and high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.J. Singh, Phys. Rev. B 77, 205126 (2008).

    Article  Google Scholar 

  2. A.N. Banerjee, R. Maity, P.K. Ghosh, and K.K. Chattopadhyay, Thin Solid Films 474, 261 (2005).

    Article  CAS  Google Scholar 

  3. G.D. Mahan and J.O. Sofo, Proc. Natl. Acad. Sci. USA 93, 7436 (1996).

    Article  CAS  Google Scholar 

  4. K. Koumoto, H. Koduka, and W.S. Seo, J. Mater. Chem. 11, 251 (2001).

    Article  CAS  Google Scholar 

  5. S. Yanagiya, N.V. Nong, J. Xu, and N. Pryds, Materials 3, 318 (2010).

    Article  CAS  Google Scholar 

  6. K. Park, K.Y. Ko, H.-C. Kwon, and S. Nahm, J. Alloy Compd. 437, 1 (2007).

    Article  CAS  Google Scholar 

  7. G. Dong, M. Zhang, W. Lan, P. Dong, and H. Yan, Vacumm 82, 1321 (2008).

    Article  CAS  Google Scholar 

  8. B. Falabretti and J. Robertson, J. Appl. Phys. 102, 123703 (2007).

    Article  Google Scholar 

  9. M.V. Lalic, J. Mestnik-Filho, A.W. Carbonari, R.N. Saxena, and M.J. Moralles, J. Phys. Condens. Matter. 14, 5517 (2002).

    Article  CAS  Google Scholar 

  10. M.V. Lalic, J. Mestnik-Filho, A.W. Carbonari, and R.N. Saxena, Solid State Commun. 125, 175 (2003).

    Article  CAS  Google Scholar 

  11. M.V. Lalic and J. Mestnik-Filho, J. Phys. Condens. Matter. 18, 1619 (2006).

    Article  CAS  Google Scholar 

  12. T. Ishiguro, A. Kitazawa, N. Mizutani, and M. Kato, J. Solid State Chem. 40, 170 (1981).

    Article  CAS  Google Scholar 

  13. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, and M.C. Payne, Z. Kristallogr. 567, 220 (2005).

    Google Scholar 

  14. G.K.H. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).

    Article  CAS  Google Scholar 

  15. F. Birch, J. Geophys. Res. 83, 1257 (1978).

    Article  CAS  Google Scholar 

  16. I. Hamada and H. Katayama-Yoshida, Phys. B 376–377, 808 (2006).

    Article  Google Scholar 

  17. L.J. Shi, Z.J. Fang, and J. Li, J. Appl. Phys. 104, 073527 (2008).

    Article  Google Scholar 

  18. Q.J. Liu, Z.T. Liu, and L.P. Feng, Phys. B 405, 2028 (2010).

    Article  CAS  Google Scholar 

  19. X. Nie, S.H. Wei, and S.B. Zhang, Phys. Rev. Lett. 88, 066405 (2002).

    Article  Google Scholar 

  20. J. Robertson, K. Xiong, and S.J. Clark, Thin Solid Films 496, 1 (2006).

    Article  CAS  Google Scholar 

  21. Th Dittrich, L. Dloczik, T. Guminskaya, and MCh Lux-Steiner, Appl. Phys. Lett. 85, 724 (2004).

    Article  Google Scholar 

  22. D.S. Kim, S.J. Park, E.K. Jeong, H.K. Lee, and S.Y. Choi, Thin Solid Films 515, 5103 (2007).

    Article  CAS  Google Scholar 

  23. F. Aryasetiawany and O. Gunnarssonz, Rep. Prog. Phys. 61, 237 (1998).

    Article  Google Scholar 

  24. R. Dovesi, R. Orlando, C. Roetti, C. Pisani, and V.R. Saunders, Phys. Stat. Sol. (b) 217, 63 (2000).

    Article  CAS  Google Scholar 

  25. V.I. Anisimov, J. Zaanen, and O.K. Andersen, Phys. Rev. B 44, 943 (1991).

    Article  CAS  Google Scholar 

  26. B.M. Bylander and L. Kleinman, Phys. Rev. B 41, 7868 (1990).

    Article  Google Scholar 

  27. P.P. Rushton, J.T. David, and S.J. Clark, Phys. Rev. B 65, 235203 (2002).

    Article  Google Scholar 

  28. D.O. Scanlon, A. Walsh, B.J. Morgan, and G.W. Watson, Phys. Rev. B 79, 035101 (2009).

    Article  Google Scholar 

  29. C.M. Bhandari and D.W. Rowe, CRC Handbook of Thermoelectrics (Boca Raton: CRC Press, 1995).

    Google Scholar 

  30. S. Lee and P. von Allmen, Appl. Phys. Lett. 88, 022107 (2006).

    Article  Google Scholar 

  31. P. Pichanusakorn and P.R. Bandaru, Appl. Phys. Lett 94, 223108 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yangthaisong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poopanya, P., Yangthaisong, A., Rattanapun, C. et al. Theoretical Study of Electronic Structure and Thermoelectric Properties of Doped CuAlO2 . J. Electron. Mater. 40, 987–991 (2011). https://doi.org/10.1007/s11664-010-1475-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1475-y

Keywords

Navigation