Skip to main content
Log in

Reactive Sintering of Copper Nanoparticles Using Intense Pulsed Light for Printed Electronics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Most commercial copper nanoparticles are covered with an oxide shell and cannot be sintered into conducting lines/films by conventional thermal sintering. To address this issue, past efforts have utilized complex reduction schemes and sophisticated chambers to prevent oxidation, thereby rendering the process cost ineffective. To alleviate these problems, we demonstrate a reactive sintering process using intense pulsed light (IPL) in the present study. The IPL process successfully removed the oxide shells of copper nanoparticles, leaving a conductive, pure copper film in a short period of time (2 ms) under ambient conditions. The in situ copper oxide reduction mechanism was studied using several different experiments and analyses. We observed instant copper oxide reduction and sintering through poly(N-vinylpyrrolidone) functionalization of copper nanoparticles, followed by IPL irradiation. This phenomenon may be explained by oxide reduction either via an intermediate acid created by ultraviolet (UV) light irradiation or by hydroxyl (-OH) end groups, which act like long-chain alcohol reductants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Tatasov, A. Kolubaev, S. Belyaev, M. Lerner, and F. Tepper, Wear 252, 63 (2002).

    Article  Google Scholar 

  2. Y. Xuan and Q. Li, Int. J. Heat Fluid Flow 21, 58 (2000).

    Article  CAS  Google Scholar 

  3. J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, and L.J. Thompson, Appl. Phys. Lett. 78, 718 (2001).

    Article  CAS  Google Scholar 

  4. A.G. Nasibulin, P.P. Ahonen, O. Richard, E.I. Kauppinen, and I.S. Altman, J. Nanoparticle Res. 3, 385 (2001).

    Article  CAS  Google Scholar 

  5. Y.I. Lee, J.R. Choi, K.J. Lee, N.E. Stott, and D.H. Kim, Nanotechnology 19, 415 (2008).

    Google Scholar 

  6. M. Berggren, D. Nilsson, and D. Robinson, Nat. Mater. 6, 3 (2007).

    Article  CAS  Google Scholar 

  7. S.H. Jeong, K.H. Woo, D.J. Kim, S.K. Lim, J.S. Kim, H.S. Shin, Y.N. Xia, and J.H. Moon, Adv. Funct. Mater. 18, 679 (2008).

    Article  CAS  Google Scholar 

  8. B.K. Park, D.J. Kim, S.H. Jeong, J.H. Moon, and J.S. Kim, Thin Solid Films 151, 7706 (2007).

    Article  Google Scholar 

  9. M.S. Yeh, Y.S. Yang, Y.P. Lee, H.F. Lee, Y.H. Yeh, and C.S. Yeh, J. Phys. Chem. B 103, 6851 (1999).

    Article  CAS  Google Scholar 

  10. L. Qi, J. Ma, and J. Shen, J. Colloid Interface Sci. 186, 498 (1997).

    Article  CAS  Google Scholar 

  11. V. Subramanian, P. Chang, D. Huang, J. Lee, S. Molesa, D. Redinger, and S. Volkman, VLSI Design in the 5th International Conference on Embedded Systems and Design (2006), p. 6.

  12. S.H. Ko, H. Pan, C.P. Grigoropoulos, C.K. Luscombe, M.J. Frechet, and D. Poulikakos, Appl. Phys. Lett. 90, 141103 (2007).

    Article  Google Scholar 

  13. S.H. Kim, S.R. Dhage, D.E. Shim, and H.T. Hahn, Appl. Phys. A 97, 791–798 (2009).

    Article  CAS  Google Scholar 

  14. H.S. Kim and H.T. Hahn, UCLA Case No. 2009-644.

  15. http://www.novacentrix.com/images/downloads/PF_Brochure_4pg.pdf.

  16. P. Liu, T.F. Li, and C. Fu, Mater. Sci. Eng. A 268, 208 (1999).

    Article  Google Scholar 

  17. H. Ohde, F. Hunt, and C.M. Wai, Chem. Mater. 13, 4130 (2001).

    Article  CAS  Google Scholar 

  18. M.A. Moharram and M.G. Khafagi, J. Appl. Polym. Sci. 105, 1888 (2007).

    Article  CAS  Google Scholar 

  19. H. Hakkinen and U. Landman, Phys. Rev. Lett. 71, 1023 (1993).

    Article  CAS  Google Scholar 

  20. C.M. Pitsillides, E.K. Joe, X. Wei, R.R. Anderson, and C.P. Lin, Biophys. J. 84, 4023 (2003).

    Article  CAS  Google Scholar 

  21. J. Pike, S.W. Chan, F. Zhang, X. Wang, and J. Hanson, Appl. Catal. A 303, 273 (2006).

    Article  CAS  Google Scholar 

  22. F.P. Incropera and D.P. Dewitt, Fundamentals of Heat and Mass Transfer, 5th ed. (New York: Wiley, 2002).

    Google Scholar 

  23. H.H. Huang, F.Q. Yan, Y.M. Kek, C.H. Chew, G.Q. Xu, W. Ji, P.S. Oh, and S.H. Tang, Langmuir 13, 172 (1997).

    Article  CAS  Google Scholar 

  24. P. Buffat and J.P. Borel, Phys. Rev. A 13, 2287 (1976).

    Article  CAS  Google Scholar 

  25. Strem Chemicals, Catalog 418 (18), Newburyport, MA, (1999).

  26. S. Horikoshi, H. Hidaka, and N. Serpone, J. Photochem. Photobiol. A 138, 69 (2001).

    Article  CAS  Google Scholar 

  27. H. Gil, A. Echavarria, and F. Echeverria, Electrochim. Acta 54, 4676 (2009).

    Article  CAS  Google Scholar 

  28. P.J. Soininen, K.-E. Elers, V. Saanila, S. Kaipio, T. Sajavaara, and S. Haukkaa, J. Electrochem. Soc. 152, G122 (2005).

    Article  CAS  Google Scholar 

  29. J.H. Lee, D.K. Kim, and W.K. Kang, Bull. Korean Chem. Soc. 27, 1869 (2006).

    Article  CAS  Google Scholar 

  30. Y. Xiong, I. Washio, J.Y. Chen, H.G. Cai, Z.Y. Li, and Y.N. Xia, Langmuir 22, 8563 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hak-Sung Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryu, J., Kim, HS. & Hahn, H.T. Reactive Sintering of Copper Nanoparticles Using Intense Pulsed Light for Printed Electronics. J. Electron. Mater. 40, 42–50 (2011). https://doi.org/10.1007/s11664-010-1384-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1384-0

Keywords

Navigation